1. This site uses cookies. By continuing to use this site, you are agreeing to our use of cookies. Learn More.
  2. Hi Guest, welcome to the TES Community!

    Connect with like-minded professionals and have your say on the issues that matter to you.

    Don't forget to look at the how to guide.

    Dismiss Notice

Level descriptors - attainment target sub levels?

Discussion in 'New teachers' started by louiseelsiet, Oct 11, 2009.

  1. louiseelsiet

    louiseelsiet New commenter

    Does anyone know where I would find attainment target sub levels please for english ks2 for Wales? I can't find anything on internet after searching for ages.
     
  2. jubilee

    jubilee Star commenter

     
  3. louiseelsiet

    louiseelsiet New commenter

    Thanks for your reply! To be honest with you, I think that it is ridiculous that I have been asked to level a short piece of writing work from the first week of term! I don't see the point in doing it! I was only ever aware of the end of key stage levelling and did this on teaching prac. In my first job I was involved in levelling at the end of the year but now in my new school they level work every term using sub levels. I have been searching like crazy looking for these "sub levels" and glad that you have pointed out to me that there are no such things! I just thought that I was looking in the wrong places. I am expected to level these pieces of work using 3C, 3B, 3A etc so how do I know what each represents as I have no guidance from my school?
     
  4. jubilee

    jubilee Star commenter

    I can never rember whether 3C is supposed to be higher or lower than 3A in this meaningless marking exercise!
     
  5. louiseelsiet

    louiseelsiet New commenter

    3C is supposed to be lower than 3A.
     
  6. I've had a look at the NC website at KS3 but couldn't find where it says:
    "The NC documents themselves make it clear that Levelling is to be done ONCE per Key Stage (at the end of it), looking at the entirety of a pupil's output against the descriptors."
    It would be really usefull to know if someone can piont me to it.
    thanx
     
  7. jubilee

    jubilee Star commenter

    I found this in a random search on the design techmology NC document found at
    http://curriculum.qcda.gov.uk/search/index.aspx?fldSiteSearch=Levels&btnGoSearch.x=23&btnGoSearch.y=12

    <font face="Minion-Regular" size="2">"The level descriptions provide the basis for making judgements about pupils&rsquo;
    performance at the end of key stages 1, 2 and 3. At key stage 4, national qualifications
    are the main means of assessing attainment in design and technology.
    </font><font face="MyriadNC-SemiBold" size="3">Assessing attainment at the end of a key stage
    </font>
    <font face="Minion-Regular" size="2">In deciding on a pupil&rsquo;s level of attainment at the end of a key stage, teachers should
    judge which description best fits the pupil&rsquo;s performance.When doing so, each
    description should be considered alongside descriptions for adjacent levels, bearing
    in mind </font><font face="Minion-Italic" size="2">The importance of design and technology </font><font face="Minion-Regular" size="2">statement on page 15.</font><font face="Minion-Regular" size="2"> Arrangements for statutory assessment at the end of each key stage are set out
    in detail"
    An identical, or almost identical statement is included in all subject and Key Stage documentation.

    </font>
     
  8. jubilee

    jubilee Star commenter

    This next is from the QCA details for Maths:
    Making a judgement
    At the end of a key stage, teachers should judge which level description best fits the pupil's performance. Each description should be considered alongside descriptions for adjacent levels. When making a judgement at the end of a key stage, you may wish to note the following points.
    <h3>Making your judgement</h3>
    • You will arrive at judgements by taking into account strengths and weaknesses in performance across a range of contexts and over a period of time, rather than focusing on a single piece of work.
    • A single piece of work will not cover all the expectations set out in a level description. It will probably provide partial evidence of attainment in one or two aspects of a level description. If you look at it alongside other pieces of work covering a range of contexts you will be able to make a judgement about which level best fits a pupil's overall performance.
    <h3>Giving pupils opportunities to demonstrate attainment</h3>
    • Your pupils will need to use a range of forms of communication to show what they can do.
    • In planning units of work and classroom approaches, you will need to provide opportunities for pupils to display their achievements in different ways, and to work in a range of situations.
    <h3>Recording</h3>Although you will want to be able to explain why you have awarded particular levels to pupils at the end of the key stage, there is no requirement for judgements to be explained in a particular way or to be supported by detailed collections of evidence for each pupil. Decisions about collecting information, about its purpose and how it should be used are matters for teachers working within an agreed school policy.
    <a name="page2_a">[/URL]<h2>Progression in mathematics</h2>The level descriptions indicate the progression in the knowledge, skills and understanding set out in the different sections of the programmes of study. These are:
    <h4>At key stage 1</h4>
    • number
    • shape, space and measures.
    At key stage 2
    • number
    • shape, space and measures
    • handling data.
    The mathematics programmes of study for key stages 1 and 2 and the primary framework for mathematics are fully aligned, with the framework providing a detailed basis for implementing the statutory requirements of the programmes of study.
    Performance has been outlined here in terms of:
    • progression by key stage
    • progression by level.
    <h3>Progression by key stage</h3>During key stage 1
    Pupils develop their knowledge and understanding of mathematics through practical activity, exploration and discussion. They learn to count, read, write and order numbers to 100 and beyond. They develop a range of mental calculation skills and use these confidently in different settings. They learn about shape and space through practical activities, which build on their understanding of their immediate environment. They begin to grasp mathematical language, using it to talk about their methods and explain their reasoning when solving problems.
    During key stage 2
    Pupils use the number system more confidently. They move from counting reliably to calculating fluently with all four number operations. They always try to tackle a problem with mental methods before using any other approach. Pupils explore features of shape and space and develop their measuring skills in a range of contexts. They discuss and present their methods and reasoning using a wider range of mathematical language, diagrams and charts.
    <h3>Progression by level</h3><h4>Level 1</h4>Typically, pupils:
    • represent their work with objects or pictures and discuss it
    • recognise and use a simple pattern or relationship
    • count, order, add and subtract numbers when solving problems involving up to 10 objects and can read and write the numbers involved
    • use everyday language to describe properties and positions
    • measure and order objects using direct comparison, and order events
    • sort objects and classify them, demonstrating the criterion they have used.
    <h4>Level 2</h4>Typically, pupils:
    • select the mathematics they use in some classroom activities and discuss their work using mathematical language
    • represent work using symbols and simple diagrams
    • count sets of objects reliably, and use mental recall of addition and subtraction facts to 10
    • use their understanding of place value to order numbers up to 100
    • solve addition and subtraction problems
    • use mental calculation strategies to solve number problems involving money and measures
    • recognise sequences of numbers, including odd and even numbers
    • use mathematical names for common 3-D and 2-D shapes and describe their properties
    • distinguish between straight and turning movements, understand angle as a measurement of turn, and recognise right angles in turns
    • use non-standard and standard units to measure length and mass
    • sort objects and classify them using more than one criterion
    • record results in simple lists, tables and block graphs, in order to communicate their findings.
    <h4>Level 3</h4>Typically, pupils:
    • try different approaches to problems to overcome difficulties
    • organise their work and check results
    • discuss their mathematical work and explain their thinking
    • use and interpret mathematical symbols and diagrams
    • show understanding of place value in numbers up to 1000, use decimal notation and recognise negative numbers, in contexts such as money and temperature
    • use mental recall of addition and subtraction facts to 20 in solving problems involving larger numbers
    • use mental recall of the 2, 3, 4, 5 and 10 multiplication tables and derive the associated division facts
    • solve whole-number problems involving multiplication or division, including those that give rise to remainders
    • use simple fractions that are several parts of a whole and recognise when two simple fractions are equivalent
    • classify 3-D and 2-D shapes in various ways
    • use non-standard units, standard metric units of length, capacity and mass, and standard units of time, in a range of contexts
    • extract and interpret information presented in simple tables and lists
    • construct and interpret bar charts and pictograms.
    <h4>Level 4</h4>Typically, pupils:
    • are developing strategies for solving problems and present information and results in a clear and organised way
    • use their understanding of place value to multiply and divide whole numbers by 10 or 100
    • use a range of mental methods of computation with the four operations, including mental recall of multiplication facts up to 10 10 and quick derivation of corresponding division facts
    • use efficient written methods of addition and subtraction and of short multiplication and division
    • check the reasonableness of their results by reference to their knowledge of the context or to the size of the numbers
    • recognise approximate proportions of a whole and use simple fractions and percentages to describe these
    • recognise and describe number patterns, and relationships including multiple, factor and square and begin to use simple formulae expressed in words
    • use and interpret coordinates in the first quadrant
    • make 3-D mathematical models and draw common 2-D shapes in different orientations on grids
    • reflect simple shapes in a mirror line
    • choose and use appropriate units and instruments, interpreting, with appropriate accuracy, numbers on a range of measuring instruments
    • find perimeters of simple shapes and find areas by counting squares
    • collect discrete data, group data where appropriate, draw and interpret frequency diagrams and construct and interpret simple line graphs.
    Level 5
    Typically, pupils:
    • identify and obtain necessary information to solve problems and check their results
    • show understanding of situations by describing them mathematically using symbols, words and diagrams and draw conclusions of their own explaining their reasoning
    • use their understanding of place value to multiply and divide whole numbers and decimals
    • order, add and subtract negative numbers in context&middot; use all four operations with decimals to two places
    • can reduce a fraction to its simplest form and solve simple problems involving ratio and direct proportion. They calculate fractional or percentage parts of quantities and measurements, using a calculator where appropriate
    • understand and use appropriate non-calculator methods to solve problems that involve multiplying and dividing any three-digit number by any two-digit number. They check their solutions by applying inverse operations or estimating using approximations
    • construct, express in symbolic form, and use simple formulae involving one or two operations and use brackets appropriately
    • use and interpret coordinates in all four quadrants
    • measure and draw angles to the nearest degree, and use language associated with angle. They know the angle sum of a triangle and that of angles at a point
    • identify all the symmetries of 2-D shapes
    • know the rough metric equivalents of imperial units still in daily use and convert one metric unit to another
    • make sensible estimates of a range of measures
    • understand and use the formula for the area of a rectangle
    • understand and use the mean of discrete data and compare two simple distributions, using the range and one of the mode, median or mean
    • interpret graphs and diagrams, including pie charts, and draw conclusions
    • understand and use the probability scale from 0 to 1.
    <a name="page3_a">[/URL]<h2>About the attainment targets</h2>The attainment targets in mathematics set out the knowledge, skills and understanding that pupils of different abilities and maturities are expected to have by the end of each key stage. Attainment targets consist of eight level descriptions of increasing difficulty, plus a description of exceptional performance above level 8. Each level description describes the type and range of performance that pupils working at that level should characteristically demonstrate.
    The level descriptions provide the basis for making judgements about pupils' performance at the end of a key stage.
    The majority of pupils are expected to work at:
    • levels 1-3 in key stage 1 and attain level 2 at the end of the key stage
    • levels 2-5 in key stage 2 and attain level 4 at the end of the key stage.
    By indicating expectations at particular levels and by charting broad progression in the subject, the level descriptions can also inform planning, teaching and assessment. Please note, the level descriptions are not designed to be used to 'level' individual pieces of work.
    found at
    http://curriculum.qcda.gov.uk/key-stages-1-and-2/assessment/assessmentofsubjects/assessmentinmathematics/index.aspx?return=/search/index.aspx%3FfldSiteSearch%3DLevels%26btnGoSearch.x%3D23%26btnGoSearch.y%3D12
    For other searches, start with www.qca.org.uk/nc
     
  9. Sub levels are a matter of proffesional judgement. If you feel that an individual only just matches the level descriptor give them a C. If they are secure but miss out on several significant areas give them a B. If the child is nearly, but not quite, meeting the descriptor in full they get an A. Also give an A if they get one area from a higher level but not much more. This comes in handy where you are expected to give a single level in a subject but the child is at different levels for each individual attainment target, for example 5 in biology (SC2), 4 in physics (Sc4), 4 in chemisty (Sc3) and 4 for investigation (SC1) would give a result of 4A. If they had a 4 in bio instead they would then get a 4B (unless of course you thought that they only just scraped the level in all 4 strands, in which case it's a C or the bio was a 3 in which case 4C).
    Ask a colleague if you can look at some of their levelled work (the year group does not matter) and use that to get a sense of what each sublevel is, but you will never get a precise definition as it's more of a guide to how a child is doing - just achieved (C), secure (B), working towards achieving the next level (A). It's not a science more of a game of best fit.
    The reason for leveling regularly, and not just at the end of the year, is easy it's parents and OFSTED. Parents can ask for their child level at any time during the year an expect an accurate reply and OFSTED expect each individual to know what level they are currently working at and what they need to do to achieve the next level (at least this is the expectation at secondary). As OFSTED can walk in at any time the only way for each child to have this info if for you to level work every 6 weeks / half term and set targets for improvement.

    Oh and you are levelling now so that improvement can be judged later - so don't be too generous, or you'll be giving 'them' a very big stick to hit you with.
     
  10. jubilee

    jubilee Star commenter

    Noooo!
    A child in YR 7, for example, should be able to quote what Level they achieved at the end of key Stage 2 and therefore know that they are working towards the next level. Simple!
    The teacher might indicate at various points that a particular project, if completed to a certain standard, would incorporate aspects of levels X and/or Y. For instance, in MFL, you'd point out to YR 8 and 9 pupils that it would be good practice to include a range of tenses wherever possible in their spoken or written work in order to be eligible, at the end of KS3, for at least level 5. It's nonsensical to keep categorising them as they are sometimes doing much lower level work (learning vocabulary, copying prepared phrases).
    The same applies in Maths (and I'm sure in other subjects too): you start a new topic and realise that they need to spend a week or more going over basic Maths that they did at primary school before you can proceed with the SOW lessons. If you are supposed to be regularly updating their Level, based on assessed work, you'd have to demote half of them by several levels!
    Levelling is for the END of each key Stage, when you allocate the best fit based on a large bank of evidence.
     
  11. Hate to start an argument but inspectors do ask children what level they are currently working at (or at least they did in Jan when i was last involved in an inspection). If you think it is fine for a year 9 child to turn round and tell an inspector they got level 5 in year 6 you are in for some unpleasent shocks. As for your year 7 child how do they know what progress they are making towards their end of keystage target if you don't asses them in the 3 years between the fixed reporting points.
    Levelling is a legal requirement for the end of each keystage but you must level more often than that to maintain improvement and provide meaningful targets for pupils. You have to distinguish between the legal requirements and good practice. If you only level at the end of a key stage thats great - i'm in secondary so just the once at the end of year 9 then. How do you sugest we meet the requirement to inform parents of a childs current level on request. I would prefer to do an assesment evry 6 weeks than be made to level on demand. It's not as if it's any more demanding than regular marking, once you are familliar with the descriptors. And yes you do 'demote' my several levels ocassionally SMT don't like it but children are better at some skills than others and have off days. Oh and i should, of course, add than we are levelling the work not the child. Last year i had a level 7 child who regularly got level 5's on assesments (because she never answered the question set), her work was given a level 5 and i explained to her, and her parents, what the issues were and why she could't be given a higher level.
     
  12. Secondary English voice here...we are asked to report a level (including a sub-level so 5c, 4a etc.) to parents every half term.
    This is very much a double-edged sword. The kids who care can be devastated if it looks like they've 'gone down' a sub- or full level but as previously posted, kids can have an off day or be better in one aspect of the subject than another - we don't assess every assessment focus every half term.
    Then the powers that be last year ordered us that we couldn't put any student down at all - great! Kid comes in with a level 5a from his key stage 2 teacher and shows nowhere near that ability in the first term or two yet we're still expected to report them at a 5a. So, at the beginning of year 8 when little Johnny is still reported as a 5a (and is actually not even a level 5 at all) then the conscientious parents are flooding in to see us because he hasn't progressed. And of course the powers that be are down on us like a ton of bricks because we're not getting results.
    And the really sad thing is that we see the kids as little walking sub-levels! I'm even starting to do it to my daughter...wonder if she's a 3c or a 3a???!!! Aargh!
    As for O.P. question, the sub-levels are a judgement call as a previous poster said.
     
  13. Many thanx for the replies Sounds like things are far from clear cut and could get very complicated or become just another set of data from which judgements can be made .
     
  14. jubilee

    jubilee Star commenter

    Purple HEDGEHOG - I am not suggesting that the pupils should get no feedback on their efforts between the end of YR6 and the end of YRr9!
    Most departments will give pupils a copy of level descriptors, in plain English, so that they can refer to what the next couple of levels require of them. Details are usually on classroom walls too.
    The various class and homework exercises will be marked and mention might be made, whole class, about aspects of the work being of a given NC level standard, but that doesn't elevate the pupil to that standard just because they achieved a discrete part of the next level descriptor.
    Once the teacher is satisfied that a class, or a differentiated group in a class, has satisfied the requirements for the next level, more complex work will be introduced and the pupils can be told that they are now working on the next level.
    They should be be perfectly able to tell an inspector or their parent, by referencing the descriptors that they have (or by ticking 'I can do...' sheets) what they have achieved regularly from the next level, what they are working on and what they haven't yet attempted.
    The most useful feedback to pupils and parents is not " Jonny is a Level 5 c overall in MFL" but " Jonny is coping well with using the Present tense of regular and irregular verbs. He usually makes correct adjectival agreements and includes a range of opinions in his spoken and written French. He generally speaks in full sentences and can write in paragraphs when he puts in the effort. He has started to make use of the Simple Future and Past tenses but confuses the infinitive and the past participle and hasn't yet grasped the need to make the past participle agree in verbs that use Etre. Jonny copes better with the newly introduced tenses when doing Reading comprehension."
    Less verbose comments on individual pieces of work would give Jonny all the information he needed for what he was doing well and what he needed to work at.
    I recently had contact with a county advisor for Maths who is incensed at the demands being made on teachers to level individual pieces of work and to 'officially' level the pupil several times per year. That person's own colleagues talk about their own children being Level 4c, 5b etc and get reminded that it is meaningless.
    That advisor's advice is that the teacher needs to know that they are giving appropriately challenging work to pupils and should be making sure that they provide work that covers the relevant level ranges that the children are working towards. After that, they and their parents just need to know that they are making progress (or not) and which skills or areas of understanding they are having difficulties with. A school might think they are covering their backs for OFSTED by making teachers follow their in-house systems but as the sub-levels have no validity and cannot be compared in any tangible way with the sub-levels claimed in another school, and will not impress. A pupil able to say that she is good with percentages and ratio but finds long multiplication difficult, especially using the grid method, but is learning a new method and that is making more sense .... will give the inspector a better idea of whether the child knows what needs to happen for learning and progress to take place.

    Levelling individual pieces of work is a nonsense, also, when you take on board how much collaboration goes on between pupils in class and with homework (also parental input).

     
  15. Juibilee
    I don't actually disagree with you, i'm just stating how Levels are used in the schools i have been working in. This started as a post on what the sub-levels really mean and that is, next to nothing in a practical way, and ,a lot in the eyes of many parents. This may or may not be the correct way to asses students, or their work, but given that we are required to give feedback to students using the level descriptors can be useful, as part of a range of strageties.
    Unfortunatly we live in a world where teaching is just part of our job and often not the focus - it is common in many schools to perform assesments in science every 2 -3 weeks so that's 1 lesson every 3 weeks where the child learns nothing. I am seldom surprised by the results of written assesments and sincerly believe them to be a total waste of time, but the society in which we live has (d)evoleved to such an extend that my proffesional judgment is no longer trusted and i am expected to proved evidence for everything i say and do. With luck this will change but i enjoy my job so i'm hanging in there a and jumping throught the increaingly flaming hoops that are being held up for me, and saving my energy for the fights that really matter (to me)
     

  16. Way to go Jubilee. You are correct about the madness of sub-levelling small pieces of work at regular intervals. It is about as accurate a way of measuring children as it would be to use a micrometer to measure the thickness of a piece of sponge.
     
  17. Hi,
    You can only look to how confidently and consistently the pupil completes the task. If it is inconsistent then award a B grade but if it is weak and shows little if hardly any command over the requirements of the level, then it is possibly only a c grade. An a grade could be given if all the requirements are met but dont show mastery of the requirements to award a level 4 grade. Again the task has to focus on the phrase Teacher assessment and that you as the teacher have assessed it and judged it as such. With evidence you can support your judgement and that's it really.
    I hope this helps you with your mind set over this issue?
     
  18. jubilee

    jubilee Star commenter

    There are no sub-levels!
    Look at any NC document, for any subject, and tell me where sub-levels are mentioned or what criteria are to be used in applying them.
    Whole NC levels (or two of them) are intended to be covered in entire Key Stages. Hence, pupils are on one level and are working towards the next one. If they perform well, they might be designated as already working at the next level (after the one awarded at the previous key Stage) and working towards a level 2 stages further on.
    Even under the spurious allocation of a,b and c sub-levels, c is not supposed to be for virtual inability to grasp the work; it's used by schools to indicate that the pupil has managed a third of the achievements described in the relevant NC level, a b describing mastery of two thirds of the level and an a signifying accomplishment with all the level descriptors for the NC level in question (the particular allocation of tasks required for each sub-level being arbitrarily decided by each school as there is no national concensus on sub-levels because they don't feature in the National Curriculum!)
    We'll soon reach a stage where parents are supposed to want evidence of more progress than sub-levels provide. How about Level 4 b ii) or 5c iv)?
     

Share This Page