1. This site uses cookies. By continuing to use this site, you are agreeing to our use of cookies. Learn More.
  2. Hi Guest, welcome to the TES Community!

    Connect with like-minded education professionals and have your say on the issues that matter to you.

    Don't forget to look at the how to guide.

    Dismiss Notice

Can you interpret this please?

Discussion in 'Mathematics' started by anon1021, Mar 20, 2012.

  1. I've been doing a little maths on exponents. When I plotted my results I expected to see a graph that developed exponentially but instead I ended up a long line across the x axis very close to 0 and then a straight line up to the last number. Please can tell me what I've done wrong/ how i've misinterpreted my results? (base number was 125)
    Any help would be greatly appreciated.
    Thanks
    P
    <table cellpadding="0" cellspacing="0" style="width:311pt;border-collapse:collapse;"><tr style="height:12.75pt;"><td style="background-color:transparent;width:59pt;height:12.75pt;border:#ece9d8;" align="right">1</td><td style="background-color:transparent;width:252pt;border:#ece9d8;" align="right">125</td></tr><tr style="height:12.75pt;"><td style="background-color:transparent;height:12.75pt;border:#ece9d8;" align="right">2</td><td style="background-color:transparent;border:#ece9d8;" align="right">15625</td></tr><tr style="height:12.75pt;"><td style="background-color:transparent;height:12.75pt;border:#ece9d8;" align="right">3</td><td style="background-color:transparent;border:#ece9d8;" align="right">1953125</td></tr><tr style="height:12.75pt;"><td style="background-color:transparent;height:12.75pt;border:#ece9d8;" align="right">4</td><td style="background-color:transparent;border:#ece9d8;" align="right">244140625</td></tr><tr style="height:12.75pt;"><td style="background-color:transparent;height:12.75pt;border:#ece9d8;" align="right">5</td><td style="background-color:transparent;border:#ece9d8;" align="right">30517578125</td></tr><tr style="height:12.75pt;"><td style="background-color:transparent;height:12.75pt;border:#ece9d8;" align="right">6</td><td style="background-color:transparent;border:#ece9d8;" align="right">3.8147E+12</td></tr><tr style="height:12.75pt;"><td style="background-color:transparent;height:12.75pt;border:#ece9d8;" align="right">7</td><td style="background-color:transparent;border:#ece9d8;" align="right">4.76837E+14</td></tr><tr style="height:12.75pt;"><td style="background-color:transparent;height:12.75pt;border:#ece9d8;" align="right">8</td><td style="background-color:transparent;border:#ece9d8;" align="right">5.96046E+16</td></tr><tr style="height:12.75pt;"><td style="background-color:transparent;height:12.75pt;border:#ece9d8;" align="right">9</td><td style="background-color:transparent;border:#ece9d8;" align="right">7.45058E+18</td></tr></table>


     
  2. I've been doing a little maths on exponents. When I plotted my results I expected to see a graph that developed exponentially but instead I ended up a long line across the x axis very close to 0 and then a straight line up to the last number. Please can tell me what I've done wrong/ how i've misinterpreted my results? (base number was 125)
    Any help would be greatly appreciated.
    Thanks
    P
    <table cellpadding="0" cellspacing="0" style="width:311pt;border-collapse:collapse;"><tr style="height:12.75pt;"><td style="background-color:transparent;width:59pt;height:12.75pt;border:#ece9d8;" align="right">1</td><td style="background-color:transparent;width:252pt;border:#ece9d8;" align="right">125</td></tr><tr style="height:12.75pt;"><td style="background-color:transparent;height:12.75pt;border:#ece9d8;" align="right">2</td><td style="background-color:transparent;border:#ece9d8;" align="right">15625</td></tr><tr style="height:12.75pt;"><td style="background-color:transparent;height:12.75pt;border:#ece9d8;" align="right">3</td><td style="background-color:transparent;border:#ece9d8;" align="right">1953125</td></tr><tr style="height:12.75pt;"><td style="background-color:transparent;height:12.75pt;border:#ece9d8;" align="right">4</td><td style="background-color:transparent;border:#ece9d8;" align="right">244140625</td></tr><tr style="height:12.75pt;"><td style="background-color:transparent;height:12.75pt;border:#ece9d8;" align="right">5</td><td style="background-color:transparent;border:#ece9d8;" align="right">30517578125</td></tr><tr style="height:12.75pt;"><td style="background-color:transparent;height:12.75pt;border:#ece9d8;" align="right">6</td><td style="background-color:transparent;border:#ece9d8;" align="right">3.8147E+12</td></tr><tr style="height:12.75pt;"><td style="background-color:transparent;height:12.75pt;border:#ece9d8;" align="right">7</td><td style="background-color:transparent;border:#ece9d8;" align="right">4.76837E+14</td></tr><tr style="height:12.75pt;"><td style="background-color:transparent;height:12.75pt;border:#ece9d8;" align="right">8</td><td style="background-color:transparent;border:#ece9d8;" align="right">5.96046E+16</td></tr><tr style="height:12.75pt;"><td style="background-color:transparent;height:12.75pt;border:#ece9d8;" align="right">9</td><td style="background-color:transparent;border:#ece9d8;" align="right">7.45058E+18</td></tr></table>


     
  3. PaulDG

    PaulDG Occasional commenter

    Your numbers increase by a factor of 125 each time - the last number is 125 times as big as the one before it.

    The curve is there, the problem is your piece of paper simply isn't big enough to show it on the scale you have.

    (If you plotted the first number 1.25 centimetres from the axis, the last number in your series would need to be plotted somewhere near the opposite end of the galaxy!, so when you plot that last number on the same planet as all the others, those others are all going to be pretty close to each other...)
     
  4. GoldMaths

    GoldMaths New commenter

  5. Thank you both!
    Unfortunately I don't have access to mymaths.
     
  6. PaulDG

    PaulDG Occasional commenter

    Don't worry.

    Try it again with a smaller base. "1.25" would be a good start. "2" is a good place to stop - once you get to "3", exponential growth already means the problem you've seen begins to be significant.
     
  7. I will do that now - thank you.

    I'm actually trying to find out what the largest number would be using the numbers 0123456789. I have a feeling it's going to be exponential and that it will be to a significantly large power.
    Does anyone know of another software programme that would enable me to explore these large numbers?
    My logic seems to draw a blank when I hit larger numbers!
    (I'm fighting between 9876^543210 and 543210^9876 and could really do with seeing the results)

    Thanks
    P
     
  8. Just tried the 1.25 base - gave me a v clear exponential graph - Thank you! :)

     
  9. PaulDG

    PaulDG Occasional commenter

    Which is bigger: 543210log(9876) or 9876log(543210) ?
     
  10. PaulDG

    PaulDG Occasional commenter

    PS 98^76 > 9876

    and 543^210 > 543210
     
  11. How about 2^3^4^5^6^7^8^9^10
    or how about
    (2!^3!^4!^5!^6!^7!^8!^9!^10!)!
    Not quite sure how big that would be but im guessing its pretty big!
     
  12. GoldMaths

    GoldMaths New commenter

    I'm confused why there is no right answer??

    Surely there are a finite amount of operations available to us as well as a finite combination of the 10 digits?

    As I right this I have thought is my first assumption fair? Why cant you/we do (((((9)!)!)!)!)!) so guessing without some criteria we would be finding infinity.
     
  13. Because it totally depends on the parameters set.
    Exactly!
    I like this one! :)








     
  14. This isn't right. In the absence of brackets, you should evaluate from right to left.


    For example, 2^3^4 is equivalent to 2^(3^4).

    So 2^3^4 = 2^81, which is much much bigger than 32^4.



    The difference is even greater when considering 2^3^4^...^9.
     
  15. afterdark

    afterdark Lead commenter

    You could use First Knuth&rsquo;s Up-Arrow Notation method of writing very large numbers...
    3&uarr;&uarr;&uarr;3
    for instance is on the cosmic scale...
    but factorial does a similar, if somewhat less impressive, job.
    There is a nice explanation to start with on
    http://listverse.com/2012/03/12/10-enormous-numbers/
    [item number 3]

    Enjoy the link.
    [​IMG]
     
  16. <img src="http://community.tes.co.uk/forums/***/jETnxhH758EL9xFL97En90Bt++hO9cwb+/F/pAfzto/jvT+J/PoN/+DDe+ijeegmrL2P1E1j9FFYVxryG1V/A6i9i9ctY/QpWfwWrv4rVX8fqr2H117D6q1j9Vaz+Mla/gtVfwuqX8f3X8f3X8NarePMLeOMVfO/z+O5n8b3P4H98DP/tRfy/z+GvnsJ3HsK/vBvfPI/fOoVf2ocv7cYXd+IXd+GLu/DqMj49i49O4oUFPDuPD8zgqRk82cD7pvHQGK4N4toQ7h/GvcO4ZxB3c/bQuwbJ5TouD+LyIC7VcLGK81Wcr+KOKk7Lpm0KdRh4DnRx7S9gn5LuFLCS45tsC+xoJ4vZLOayaCS5phOYimMizsHD5vGMxknzPB721aEaQjVEuH+Bn6vHo66KH90+lN3o9qLPj1oQ1QAGfKh6MBJEI4kdnXR/l/Fgt3SgLO0vGfYWhQNF8UBRPNQlsvOb4yWcLOH2HtzejTvKOF/G5W5cqeDuPlyt4eIwuTBO75rAlVHcPYLro3hsEs828EIDn5jDK0v4yk785gGe/v6L0/iD2/CHJ/Avz+Bfn8e3L+Lbl/F/XsK3L+PfXcV3ruL/uhN/cgn/+hz+9zP4Zyfwh8fx+8fwu0fwWwfxj/fjl3fjizvw6nZ8bhmfWsTLi3hhCR9ewDPzeHoOT8zisRk8NGW4b1i41IOzRRzvxJEO7EliewzbE1hOYiGB2SSZSdDppDgVN0wl6HgU4zGMRTASxXDTJhvzgmJWoWwqD8t4iuutcXIe5GTDoaSTm9pFHE3mNzJyWvbWdOTo8Q7jViGHmTlyexsPcl4+hK3kR4/cS8iLBSIYjPFJ0mzY2qTMm0YKMyk00jzF2ZnH3jwOdOFwASe6cbKE00WcLeJyBfcP49EGnlnEp3fj9QP4ldvwtTP4xhn84Tn8q0v4t1fwn96D/ww/u5x/I+n8L+ew/dewFsv481P4fufw1uvYPVVrP4CVr+E1a9i9dew+htY/cdY/RpWfwurv43Vb2D1m1j9fax+q0m/j9Xfw+o3sPoNrP4OVr+G1a9h9Tfx1q/jrV/Bm7+M730F3/sSvvcq3ngVb76G776C/ZJ/Mfn8Wfvx/xEL55J37rdvz6MXx1P35pL35xJ15bxucW8Jmd+PgKXljA87P48ByeaeCJCTwyjIdH8OAI3jOCGyO4Noz7h3DPIO4ZxN2yGc/lQVyq42IdF2o4X8PZPm5ecKKylu4c7V5zzeHU6eJz4XbksZzHch6Lcrozz7bamodeJ3i6w3JQZfaoUlE9GCX87CFE6iHUAqgFUfWjGkC/F/2+1rXiQ9GJHp9cFh/GgB9VP+p+TEQwn8SubTjSLd3WazpSFg5sw+4OHCwKB4vCoS6R1UMfl4sF7qjgfPf/z957B0ddd2/r900em9JdtM2GzZhk5CQ3nvvvTdKSOgBAqE36VV6bypNARuiIAqiKCp2wIYoHUE6pL+fPz6fTdCv9x9ff/fM/bufhzNndoRxHAdNXrnO+5zrYpgzw50Z6coYd8Z6MNabCj8qghkdRnUk02JYkMSGbHYVcLCYt0v5cDBnKjg/kotVXBnL1XH8PpWbM/ljNnfn8XABDxfxaBEPF/NoMQ8W82Ahdxdw+zmuz+LKNH6bzM/j+GEU3wzjs8GcKOZILq9nsj+Dl5LZkcy2JDbEszaWlTGsiGZJNPMjFNNDlBP9qPJiuBuD9eRqSLEi1YZEGxJsiLUmUvphy0oZZkWIIXtQQo6vJT6GfMI/jTT7yDsFLbGkjj3QdXtqvGYYPEjZ1RadMO9I70706vw3Qqdr+2fIeVb/tP5TyLGVjW3QdEPbHYceOHbHqad8zta/t3x/42UpX8P5Wsj5nlIkgewPbUukHVEaYrQkOpDqSLaeAmdKnBmkZ6ieES6Md2emP4sjWJPA1hQOZnOkkJOD+LySb0fw4xh+q+b6FB7O5fECHi+hbiWN62jcQtNOmnbRvJ9GCTPvII4hPkCcQpxGnEF8ifga8S3iLOIc4jzie8SPiB8RPyB+QJxHnEV8h/gW8RXiC8TniNOIUzSfpPEEze/R+BbikCyPGg7wcBd3tnBzLVef5/tZfDSSt4p4LZPXMnkji9ez2Z3OtiQ2xrI2mjXRrIpmaTgLQ5gXzJxgZgYxPZDJAUzyl896xvlS5cdoP/nCVFI8ld4MGSC7hUrGOcVusuLJe2qzIMegeDIcZa0jDdkk8MQ6EGv/p+xRGTwGA+9ga4Ktn9I6anzV+Fkq/CwVf3mB8OqNR8+/b31n3Hvjo1b6qGR9429OqJqkvqQ5KnKclQWuRoWuigI9uToy7cl1UuY6KfP0Mm9K9ZTpGeQs65thekY4M8qVcW5M8KTam/GBTAxnegxzE1ieyqYc9pZyeChHyzlZyRej+H4cv9ZwbTK3pnBrOg8WcncJD5dyfzmPl/NwJU+e5+Eqnqzm8Vrq11O3kYaNPNnA4zU8fJ4787g1iytT+amab0fx6VA+HMj7pbyRxcEsXk5jVzI7E9gSy8YY1kazLIr5kcwJYWoQE/0Y5U5JXzJtyLAj3Y5kO+LtiJX+qK0ItyZULef0BKkItDSAx0Iesnk9FYsggedPudctWqc7mi6yybe1ITTPsiN9OtO7Cz0707Pzn7ROtw7PkPOs/mn9B5Fj103RwhuHHnLWoXRY4N5b3k/zUeEvtSHfU8q/aQkjiNQQpSVOR1I/spzJd6GsP+X9qdBT5cpMX5aHsTGOnSnsSueVdN7J5sNCvirn+5HyGO3uDB7NpW4JdSuoX0P9ZhpeoHEPTa/Q8BoNR6l/n6YPEB8jziC+QZxH/Ij4FXEJcRlxFXENcR1xA3EDcQtxG/E74ibiBuI64iriKuIK4hLiIuInxA80n6VR4tDHiJM0vk/DUWoP8+QNnhykdj91+/hjE78s5KvJnB7NyaG8W8LhfA5ksieFnbFsjWFrLJtjWR/L6iiWhrE4jAWhzA1lVjAzAuST0mp/xvoz1p8x/oz2Y6QfI3wZ7stQyTinxa5tACXulLhT5ELhUyttOYZsnrR+pPQjxZFERxIM4InXyXejkmdBa+K1rZw9GmxNkI1EHQLU+KtkF0vJyFKKzpSSNL17/U179ca9F54W+KrxssCzNz59iLQl2cm4YEC7QnezfFdy9bK9QqEjRU7kO8lZeUXSyadhOW2Ingo9w/SMdGGsGxM9merLTH+WRLEqnk2p7MxiTz4HS3mnnBMjODut408z21+e1/nW0m6PVlk2blCLLdZiu6p2I08207CVxp2I3YhXDGPVPYh9hkHrXmp38Wg79zfweDW1y3m4mFtzuTqdXybxw3jOjuVkKceLOZLPoSwOpLI3nhdj2BrN2hiWxrA4knkRzAphvA/lzuRrydWS7UCaPcn2xEu3OzZEWBOmJtSKEBXBalnrtLzr/OlGykAd6Uc6FwN1HA3vOhppvNYVm66t1LHoRO8u9Ppb6jxDzrP6Z/WfQo5dN4Wmu1I6/GzdUuspj9Skk0/p+MZfRYCVPFILVhNi1RpJEKUhyp4oHXGOpDiT40KJO+XujHRnvDuz/FgZzs4kDmZyKIfDORzJ5qM8vi7jl2FcG8cfk3g0i8YFiOWIVTSvp2k7zbsQBxBvIo4g3kd8SsMXiK8R5xA/IX5DXEXcQNxB3EPcQzxAPEA8RDxCPELUIeoRtYhaxGPEQ8RDxAPEPcRdxB+I3xE3ENcMEPoe8S3iDA2nqD9B/fs0voc4Qu1B6l+hbjePd3JnLRdm89lIjhVztJA3s3g5hd2J7E7kxSR2JrIlnjWRrIxkeQSLwpkfynPBzA5keiATA+TFtnEBVAUwxp9R/oz0o8KLCi/KvSj3lK1CyzwoHUCxG8VSMqnLnzYLMvsZckidZPBI7Em0J9G+1bNAComINIBHTry2JlB+2iFIrQxSKwNViqcclPEzx6f337R3H7wt8VbhbYmPBf6WRNiRqjfN9+hQ5t2hZIBpvjO5juTrKNBRqqfMhUI9hQbeSCsDkr5p4c04N6b4MDOQ+WEsD2dzFPuSeaeAjyr5clyX81MsL87RXlnseGm+w8V5Nj/PUf8w0/zczN5nZ/Q4O6PHuVmdvprKN9M5/xwXFnF1FXe2KB/vMmp4BXG0izhmJI4jjiOOId6i7lXq9iFeQGxHbKRpDU9WcH8Rt+Zx4znOjeGbUXw+lI9KOZbDoVRei2dPHJsTWB3PiliWxrAgmmkhVHkyxIVCR3J1ZOhIcSDBntgWHzwrwq3kKFJ5yCZpHcOBlLdl62Wuu3mrG5tsjdOyTdANrcH6U9I68jZBV3p3pZcBPD060aOTsnvHZ8h5Vv+0/lPIkbw3pMO0lkMc516tvPG0wEeFr5oANYHWMm+kq8/IlggceyIdiNaRoCfVmTw3Bg5guCdVHiwIZ1UU2xPYn8HbuZwo5MMiThfxYzlXR3K3mifTaJyNWIhYgViP2IZ4EfEK4k3EMcSHiE8RXyF+QPyC+BVxBXETcQfxAPEYUSvTpbmRxkYammhopr6ZRkGjoEFQL2gUNDbR2EhzA831iDoDhx4ZQHXXgJ9LiAuI84ivEZ8iPpIffsRbiNcR+3i4kcvzOT+RL0dyajBH8nkjk1fTeDmV3UnsTGRTNOuiWRPF8giWhLEglHlBzAmS/b6qgxkfJFNndACjA6j0odJbthBttaz2lLVOiRvFLftsLuS5yAHYGXrSnGXqJPUjqR9JWrmfDh6NtpfjrkNtFa13o1YEWhFsZSS1BB5J8QRYyornLy39qC6FiwfZEKMzTevfIdejQ6F3xwI34wI3hSTIipzkB5syyWpBT6l0f+PMIBfKnalwYYQro90Z58lUP54LZVms6ZqkTjtSOJzCJzmcK+eX0YoL4zv8NL7T9+N7fDfBfH8qOxNYE84CP2a4UeMq9xwv5nqzwI9loayJZWs6uwrYV8r5ZSYX1ihv7DR5eLBz4+Ee4t2e4r0O4ijiTcSriFcQuxA7EBtoXE3t8/z+HNemc3EC54ZzpoyTuRxL5fUUXkxhYwprE1mVyIpEFsQwLYRxAZToKXQix5F0Hcla4uxl5EhPaOFWf9I60tKgn6XB+fupeL1WX5ynokWdntqZtusqv7NK1DHvpuhtoI5B6yh7dFI+Q86z+of1v0XO05kFUi5OC2+kzIJebenVlt7tMTeE4vTqKOfiWHZEZQge/ks2gcQb155PBRNY4K1S+Kjxs1L4W+OvMrziGJATa0eMPTE6Yh1J0pPpSrEb5R6M9qTGk/WJ7EhkXxJvpHMsh08K+LKM7wdyZxR1ExDTEfMQixErERsQLyD2I95AvIv4CHEGcQ7xM+I3xE2a/0DcRTxE1CIaEAIhaG6mSciAqRPUCmoFDwWPBQ8EDwQPDb98IqgXNAgam2lsorkR0YCoN4ihx4jHiCeIB4jbiEuI8zR/hfgG8TH1R3nyGk9eoXYPj3bycDM/zuDraj6q5GgRh3J4NZ19yeyKZ2cMW2PYGMWaCFaEsSSEhcHMDWZqIJMM4BkfxNhAxgQxKpBhvgzzlc0rKzwZ6kGFB+XuDHKXc0hLDXKnoD/5LTsFerL0pOtJcyL1KbeCFC1J2la5E6MhylamztOOYUFWcnTe08888lG9tI5ojp85AeYEmBPYh0BzfHvj04uAPkTbk+XWptSnS5l3h2J302xH8vUU6SlzkU+OyvQUO9Fq02l4zxvuzAhnqt2Z7Ml0X+aFsDyWdalttuV235fX+czwPudG9Tw/xvyLim7v5LAjgiXuzHRijhtTXKjSUWlPuZZKJ0a7U+1NjRdTPJk8gCleTPdjTggLI1kSy+wQliezewgnZvLjxj5/HNDXH/UQxx3Fh4gTiKOIQ4gDNO2hYSe1W3iwhrvL+f05Ltfw/XC+LOF0Fu9ncDCDlzLYlsLmJDYlsSaexdHMCWOIE2VOFDiSpSPVgXh7YlqQY90qdFqQE6DCX2UQOhZ4Wsg7bH/yAO3ZKnSe3l6TqCMhR9UFi66tsTq9OiHFHHRvT/d2im5tkb72WwwI/pqjY0IbI8xa7D6ltC0FxrRS51n9v1X/Cjl/IU2LrGlvZtxCmi5tjbq1VXZvZyR5qUnixrw95u2x6IC6g1LdEevOCuvO2HRR2nZV2HVRaLrJ2WtSYqNjN/SGkGk5fq03HgbkeKmNvK2MvaxNfG1MpYG+9A0rwppYO5J1ZDiToCPFmRw3SgZQ6UlNAAsjWB/LC/HsT+adDD7I4fNCfhjCtSoeTkRMRkxFPIdYitiA2I14A3EMcQbxNfVnqfuRuks030TcQ9TSbMBJreCJ4IngsYEr95t52MzDZh40yX1bcFnwi+A3wWXBDcFtwX3BY8HtOu7V8aSepkZEs8wtIRDNiEZEA831NNXR9ITmh4j7PPqN2p+pP0f9l9Sfou4Yjw/z+DUe7uP3zfy0iDOT+HgkJwZyNJ/DmbyRxmup7E1gaySrQlgaxJJQlkUwP4znQpkewqQgqgOpCmRUEKOCGR3C6CBG+1PlQ5UHVe6Mc1WMcWWEGxXulLszxF32LCh2pkhPoTMFevL05OrJdiLbSU6Bkxap0x1IdWgFj+RI/Zchm3w0akWoNSHWBFrjb42fDb42xr42pl4qYx+VSYDKJFRtEmVjFGdrnGCtSLAirDuJKvIcGexhOty/faVv2yFuRqXOlDrLUka67hzsQrkb5W6KEmezIr1ZqZPRIEcqHBmlZ4ILU1yZ6cZ8H54PY2MiL+QYv1re573xjqem+70xwmNLrsPsILMRjgyxY5CGwVoGaxnswCAdA3UMcpSduQfqGWTYRKh0Z4QnY3yo9mdSEFOCmR7O9FCmBfNcOKvSeXUUXy3TXd/VT5yyEt8oxXlT8TXNH/DgMA/eouEdHu/nzjZ+X8Ht+fwxg9+ruT6MXyv4sJB3Cngjk1dS2ZvECwmsi2RZKIvCjab5K0a6UexEniOZ/UjVk6QjwpZwW8Ktn/rjtSLYuhU5LasE3n3w7GPIcn0qUq9fd5x6KHXd0HZTarsq7Loo7LoobDtj00lhY0ixsjL48Fp0kL/A+3SgT3ulFB4qRVZ3baOQ/G86taNzGzq0oZOZIV/HRPpUtDdStDGinRIzJW3AVI6CfBYe+v9S/W+RI4mbzm2Ukrjp1lbZwptebenTDvP2hiycjqgNWTi2nWlJmJY96juj62qwxuremhDs2QuPPngakONpZeJl3cbbxszbytjfxiTEVhluS6QNcXakacnWk+RAhjMlHgzzZUIAc8NZG6d8MUW5P4XD6ZzM4bMizg3ktxH8UUPjdMRsxFzEEsQ6xG7EIcQJmj/jwRke/EDdNZofIOoRzYhmmpq5V8/dBu418qCZJ4I6Sa8YuknQ3ExzM01NNDVRJ/hDcENwQ3BT+mzkVj23aw3aSCCaaW5ASN2EELJaapCo1sTjRmrruX+XJ7eovUb9RerPUfcFdR9T9wF1x3j4Bjde5JdVnJvD52M5XsbhTN7O4M0U9ieyK5at0ayPlO1VloaxIIzngpkRRE0Q44MZE8yYEMYEMyaYsQGM82a8BxP6Kyc6G413VYxyY/gAKtwpd2OIq2xHXWoYWBXqKZD82ZzkztDJ/TR1krTyTkGM5k/UibAlrAU5NvjZ4muLt62xt42Zh9rY37pNqG27SDvTGGtlrIp4S5JV5NhR1JdyN0Z4G43yNRnupRziSpmewS5yTENZi4GNK0PclIPdO5a5tCvrZzxYR6UjY/VMcWX2ANZHszacddHszlG+PUz9eoX5hnSm+DPWv/Og/h2zNaSoSFWTYUOWHVl25Pc1zu9rXKAzLnQ0KXQ0KXIyLe5nVqw3LdYrS1wY5KooH6Ac5s1IP8YFUh3EzChmRDAtlKlBTA9mUQwbstg5kDOrubCHh+8jvkH8gPiOhk95cgLxAY2HeLKL+s00rqJuLvcmcGUk31bw8SDez+ftDF5P5eVEdkSzPpy1UWbzg42rvah0pdSFPBcynUnRG7zvbBQGD9BW5LRY3rWY4nj3YUAvBvTCrafCradCdn/orujXXanrqtR1VWq7KrVdlXZdjGw7K207K206oemIphM2HbHugFUH1O2xbI9lexk8vdu1ZpR0baPoKtl9tiQdPBVtYAg4ULRT0k5JW8Uz5Py/Wv8p5Oi64NgN5664dKN/D9yeSqSXrj69LJEkjreNmY9tGz9bs2CNaYS9cZQdMbYk2pHhQI6eVB15blT6MTGMOVGsTFDuSFXuz1IcyuZ4Pp8P5FwFF0fx+0Qez6J5EWIFYi1iG2If4jDiI8RXiO8RVxG3EY8NEqQJUUvTg6eGYC1dh6gz7AU8NLzKtCwRNBm0y9Mt5H9mcyNNDTQ3PqVyDN1kmNHVCeqbqG+gsRbxEHEHcR1xkebvEWdpOE3DSZ4c5f5r3NrJxaWcmcjJco4V81YWB5LZl8i+ZF5KYnMMq0NZHcnyCBaHMjeEacFMCqY6lHGhjA1hbDDjAhnry3hvqt2Z0J/xbox2Z4QnwwdQ6U65G4NdGOgse4MWO8v7bAUG8OTqDVEIjjJ10nQk60h2kJ92YqUhW4s7sh0RNvI1VYgtgbYE2Cn97Uz97dr4WJsE27WJdmgXY28SrSbGgiQVWbYM8zKWYDPK12SEt1GFO4OcKXViqJvhX69FgjgzyIVhHu2GupkNdVZUODHamckDmOPP4mDWx7Evr/M7w+xeH2q1PlU51YtKLcW2pFmSaEmCBclqMjXk9jXK7WuU46CUWvplns4439E439G4wMm4oJ+yUK8ocVGUuSnKBzDMm9E+VPky3o9JQUwPY3Y4s0KZFcq8CBbGsm0gB8ZzegU330R8hbiA+BHxDeJLxIeIQ4j9iD2IzdQt4uZUfpvEuSo+G8LxAt7JlpXrjhi2JbV/PqbdrGDlOG8qPCkdQG5/0vQtf7wKiestWke2gXhK6EjUkS9wDULHtScu3RX6HgrH7gpdV6W2m5G2q9IgdJS2nZ8h51n9u+s/hRzHrjJyZInTC4/eePQ2HGpY4K3CR630tTH1szXzszUL0rQJtzeJ7WsSpyXRlhR7snUUOlPgTLk31SHMiWFFAptS2J3Ba1m8V8gnAzk7jItVXK/h3iwaF9G8hvrt1O2h8XXEMcQniG8NbzbSRkALVGoRTwx7aPcQvyOuIn6Rf1Bt/JpHn/DoE+o+oe40DadpOE3jpzR+ivgBcQHxG+I64g7ikeH558FTr0FNf4McSQM1GbrZQCkZb3cRNxFXqfuO+q9o+JzGj6g/yr2XubqOCwv4tIr3B/JaOgeSOZjGwXR2J7Ilki0xrI9mZQRLwpgXwswQpoYyKZwJofJOwfgAqn2o9mLCAMYNYLQXI73+RJ0hrnIOwkBXSlwodqXIhUI9+c7kGeROtiNZ/VrD31J0JGnl2Dcp6DpaQ7Q0arMh2kYeB4XYKYLslIF2JoF2JoG2xuH2JjEOxlG2RFgSpyZHxxA3o/HBHcYGth3tZyrxRhJeA/VUGqRYC3UGOTPImUp35bD+yuFujHFnii8LwpSrEtpsTm2/Nb3T3iLLPSVWK+JNh+tI705WL4o0pFuRbEO6LRlacvsaZeuMchyUmQ6KTA3p9mTZk6ElW6vI6qvMcVBm64xy+yrzHGkJ3WmJ+Ct3ZowXU0KYHcX8GBZEsyiWpQmsSGFtDi+U884Mzm3jwXuI84grncRZxBeIE4i3EG8gDtJw5VI5AAAgAElEQVS4nT+W8sdCLk/n/Bg+G8IHRRzJ5tUU9iSwK63NhoR2iyJMpwQZVfkx2JP8/qRLrhBaYqWzXDsibOQh29N+dy1ax1d60WnJb+2p6N8L1x5K555yaJ5DdyNtNyNNV6Wmq9Kui5FdF8Uz5Dyrf3P9p5Dj1A2n7k9JnN6yFYo8AbDER42vlZG/jUmArWmArWmIvWmUg2l8X+MkHan2ZDlQ5MRAFyq9GB/ErCiWJbI+me0pvJzOm5mcGsjXFVwYy/Wp/DGHJ4sRq2nYwb3XuPUu9z7kyZfUf0/TrzRfpfHGU6toEm8eIe4gbtJ0CvE+DW/z4FVu7eLKNi6u46fV/PQ8Pz3Phef5ZSW/reTSai6t4soaHu7gyUs0vII4hDiO+NQwUbmGuI14aEBOAw1PqH2EaEY0/el1p/mpbpFHol5euW6+SeMl6n6k7hvqT/PkPe6/yp2X+GUxX0zk3RLeyOJQFoezeS2NvQnsjmdnLJuiWR3BMmnIFsbMcKaEUhPKxBAmBDHBn2o/qqWgZV/GeMvgGe5BhTtD3VtjeMrcKXWl2FUGT5FLq9zJcSKrH1mOZDiS5kRKX5J0JPUl3oE4w7fFWHtibYm1lVJhFJF2RuEaozCNcZi9UYS9cbSGKFuirIhVk6Gj3FsxIaLT2EDTKl+jkZ5UulHuzBA95c4MdWHEAIa7U+Eq/6b0+9Jy2kg3xnkxLZiFMWarU7tuyTHfmW/5UpHtvBAG2pDdi2JbBjpSYEtCT9JsSLYl2ZoEKxJUxKlIVJNoTbI1ybak2JBiR5odqRrSNYo0e0WGlkwHRVZfRZ4jhU7yXtxgFyrcGOXFBD9q/JnoR40vk/2ZGcjyWFYlsjaNDTm8NIwPF3HrLcR3bcTP7cUFxLeIDxHHEO9S/xp/bOXxeh4s5so0zldxZigni3kniwMpvJLO9iTTVTHG88KNJwYph/tQ7CLTPVmyXtUSo5Ej2CXkBP2ZOvL2Wh85Q29AH9x7Ibl6S8hx6qF06G70Z+o8Q86z+nfXfxA5/Xq0ShwJOV7msrGNnyW+avytjCXkBNkZh2mMYxyMk/sq03Vk6yh0ZKALwz2YHMxzESyPl3mzL51DWRzL48sKfqzi2lTuzOPRMhrWILZTv59bH3D1C26f5dFF6q7R+DvN0vHmXcR9xEPEvU7istHjr7lyjN/288NyLizkp7mcn8XZaXxVwxfjOTOO7yZytobzNXw/iZ+m8PNULk7l0hRuTuP2DP6Yy90l3FvD/c3ce4k/9vH4KE8+ovEs4qq8mCAaEI2IJ4ZJ3Z/VT4Nhz63BMHOrb6ZBmsg9ofEmT37hyXc8Os3DYzx8k7u7uLSSbybzUSUflPFeIUdzeCudA8nsS+CFWDZHsSac5eEsDmdeBNNDmRbKFIk6wa23O2MlozZfRnszypPhHgxzb10oGOzOQHfK3Clxo8SNYlf5brR1s0BPthOZTq15o8k6khyU8Q7EO5BgT7wt8bbKODtljJ0yWtPSxDsQpyHGhkRbshwZ5MW4MNOpsZ3H+Cqe5s0QPUNdqHRjuDvD3KhwZaiLDKEKV4a5MdyVcd7MDGVxYttVaV3XZHRfldZ9ZUqPsR4MtCetB0ndyVCToyXTlgQVidYk2pJoTayaaHOiLUm0JlWriFcTL3HIhiQbEm1lU+cUO2WqBok9OQ6KvL4UOVLsyCBnKtwY5c4Yd8Z4MM6TSQHMDmFhCCujWJ3AyiRWprFzCMfn8/1OxFdm4lIPcbWjOI/4HPEZ9R9wbz9NL9GwgbtLuTqLnyfw9XBOFnM4m1cz2JXKpgTlilizORGm4wONBg8g15GsfqQ5kaKTE12j7Yh66s1M2hIMULd6DnmZ42UuZ7sNMBh7u/RW9Oup6NfTSNdDqethrO1hpO1mpO1mpOmm0HR6hpxn9W+t/xRy+nVH37NV4nj0UXiZK7wNxp3+KvysCLAxCrQ1DrIzDrUzCrclRktKX7J0FOgo0zNsAON9mB/J8jg2JLEjlZczOJzDyRLOlPNjFZcnc3c+T1bRsAnxAuIVGt/hzrfc+JW716j9g+b7CKnvIG4hLtH4HX+c4MLLfL6G9+ZwdAKfjOXMSL4YwZnhfDGcM8P4spIvK/l2ON+N4PxIfhjNT6P5pYpfq7hSxY1R/D6aW2O5NZHfp3F9Nlfmc2kJF5ZxYT1XdnPnbRpOI35EXEPcRdxB3H9KYNXL4Klvovap9euWfTlJBjU8ovYWdZeo/YHHZ6g9Sf1Rnhzgj038toDvqvlkKMcLOZLN4XReS+blBF6MYYshtWVJBHNDmB3KtDAmhzAxhOogxhvSECSLtjE+jPZmhBfDPaj0pMLDYETtzmB3ygwthWwWG8DTkvwmaZ00R0WKI8k6Oeg6yUGZqDFOtjNO1BgnaowT7I0T7JUJ9iTak6IjSUOyhgJnhgVQHWFSHWk0NoTRPozyZLgbla4MdZZDBypdGeZGpSsVLnIPc2O4G6M9qPZlRhhLk9uszemxOqvHgvh2Nf6MdCOmAxkqihzJ1ioiexLQmag+pPXtEKUizoYUjTLBThFvRYwVSbaK1L4mMZZEqYhVEWNFnJpYaxKsibMh0UaZaKNMsjVK1Shl8GjJ05KvpdSJoS4Md2PMACb6MSPMbFF0mwUBLA9hRSQrYliRyLocXhjKy+P5dgePTyOuWYgriJ8RF2g8S+0HiNcQu2naxuNV3F7Axcl8NYwPSziczcEMXkpjY3KbZfFtp4cbj/ChzEXGfKYjaTqS7YnXEGNLpA3hNoRay7vpLVHWPmq8LeT0vKdNP137KPW96NdT4djTSNdDupYz0nZXarsrnyHnWf2b6/9vyPGzwF/KwlETYGMUbKMMsVWG2SnDrYnTkO5AriMljpTrGePJZD+WRbMujm3J7E3njWw+KObrCn6u4vJEbs3i8XIaNtEkGQq8ReMHPPiFmzd5eI8m6RrmMeI+4ja1X3LrXc5u5fhsDlVxaCTvVvHRWE4M5qOBfFTGRwM5VcapMj4p5XQpJ/M4lc/H+XxayOfFfFnCV6WcLeXngVwcxG9D+G0Yl0dzeTy/1XBxKtcW8ttiLi7m4gqubOLuXurfoukE4hrid8RtA3sk8DTS2EBDM/UG6jwWPGrpZh7V8fgxTfdouknjBRq+peljxAma3+LhTn5byJdj+WAQ7+ZxJIu30ng1iT1x7IwyRLZEsCiYuSHMCmVaCJNCmBAiP+1MCKDan/GSOZs3o7wY6clwTxk8LfEHgwcweABl7pT0p8RFpk6RXpY7OXqyHMl0IsORNEdFqk4+30nWKpPtjA2tTNaQYkeKhlQNGQ6ka8jRUenD5Lg2MxLbjQtjqAdjfanyYcwARrgzXKKLIerm6b8e7s5od6q8mBHGwkTW5XbbVGz5fFavSaHKkr4k9CLDmiQ1sZbEqohWG0eo2wSbm/n3JLAHESriNYp4jSJSTag5oeaEWxKhIkJFpJpINVFWRFsTbU2MDbE2RrE2RvE2xkm2Rsl2ylQNmRqyNOQ7UOLEYGcqXKlwZpgzo9yodmdJaLfF/u3m+zM/mGVxrM1ifRHrB7J1JN/uRvzQRVwzEVflx8Lms4h3Ea8jXqH5BZ6s5eY8vh/H5+Ucy+OtbPZn8mKm0fqUNgtjzCYGUOFOoZSzJ7mvakm0I9aWaMkLx4ZQyVzVGj8rfKzwsWo902k1/eyNax/0veTgal0PpZwf+gw5z+r/Syn/vv61y8D/Ejl92iv7tFdadMCyo1LdUcqZVlh3ltf8NdIyTDelQ3cjaWr8r5Dj0wdfc/xUBFgRZE2IrTJcYxRlr4yyJdWBXEfyHCjSMMyZ2aGsS22zJoYt8byUzP40juTwSRk/jOJKDfef4+587q7g8Tbq99HwOuI9ms5Qe5n7N6j7A/EE0YC4xeMvuPImx57j+HSOT+D90bw/jGNDODaI98s4UsiRQo4UcKSQowUcLeBYPsfyeS+P9/M4ns/JfE7m81E+pwo4VcCnBXxeyBfFfD2Qb4ZwtpLzI/h+FD9W8UsNV6dzfTY353J7IQ+Wc28D9e8gPkX8hPgdcc8w3HssL2o3Cp4IHgjuCu4I7ghqhcyhRkFjI+Ix4i7idxq/Q3yOOEHDmzx8icsr+GYypyo5XsTxIo7lcSiDvfHsjGRrhOFpJ5wFYcwKYUowNUFUh1AdwpQQJgczKZCJgbI/W5Ufo30Z7csIH4Z7U+nNUA+ZOoPc5bBROfZNT4Ez+S2bbI5kOpGuJ11PupMy3UmZ7mSU7dQ2TWOaYEWyNVl9FYV6RYETeQ4kWVCgY4QfE8ONaiKpDmNcCNXBjHJnlDuj3f76OcqNke6MdmO0B2M9GefDRD9ljT8b8vtsLu69JrfH9AhFiY4kc1JUZDsQY0GkJRGWhKqMQ1RmQar2QZadglRtQ1WE/V2HWBBiQail/EspeTbCiigbZZSNMtbGKM5OGS+P2ki1I19HoY5iHaWODNEzzFUx0l0x1t1kukfHWR7t5/i0nR9svCSGlSmszWVdMS+MYfUQ9s/mzmlEg1bUIq4jLiG+RpxEvIN4E7GXR6u5MoufJvDJQN4vkn1dt6awKtFoQbTR9HDjIe6U9G8lfYaOeA2R1sTYE2lPhB0hdgTZ4G+Dr7UBOZZ/Rk4fXPvgYo5zb4Vjbxx7KbQ9WqN0pB8QtV0Vmi5I9zrS17VlR6VlR6V5B6VkMtKzvbJ7O6Pu7RTd2j8Vq9OWzm3oZEYns3+JHBMjY2NjYyMjI+n70TP2/N9T/xXI8bXA1xxfc/wtZeSE2ioiNYpoexI0pDtQ4ESZnkpnJnixKJJNqUab4nkxiQPpvJXDiUK+Hsqv47g1nXtzebCM2i007Ue8gziJ+ALxk8G05i7iJg3nuHyYz9ZwdBrHJnK8iveHcWwQx4o4ls+7uRzJ49Uc9ueyP5cDuRzI5dUcXs3htWxez+L1LA5lcyibw9m8ncPbObyTy5FcjuXxfgEfFHGqlE8H8uUgvh7C2Qp+HsHVsdys5vZE7k/myQweLeT3DdzaR907iI8R3yIuIm4ZtNcjRC21DTw2eBk8MtgZSDO3+maa6g1/83XERcRZxKeIo9zfy+VVnJ/DR+WcHMj7RRzN5VAmB5PZE8/OWDZHsTaKFREsCGdOGNPCmBLGlDCmhjA1mCmSYUGAQe74McZX9qKWcnfKPWQvaml/WgJPiV62OJN8nVuoI4PHSZnpqMxxMstyMM7Qku1AQV8K+5JvT74dg/WM9mZyGDNijKdGKiaEMi6IcYGMcmf0v+5RbnISwaQAxdzojstSu6/J6b0opUNNKOX9ydGQZEWCNfF2hKkIVSmD1KaBarNAVXt/dSd/VZdAVfsQtTLEilA1f/kMljxkVfLvSGEZYdZE2iojbZVRdkYxdso4OxLskLRabl9lXl8K+lKso8yRwc5UuhqN6m88waPzlAEdp3l1muXfdn6EydJ4VqazOpd1xawrZ99Uzuzm/heI64jbiJuInxBfIT5EHEW8Ru0O/ljK1Vl8N4pPyzlWxKvZ7MpgYzIr4pgbzUhvBg+gxJl8J3L7kakjWUusLTH2RGmI0BCiIcAWP9u/Ikeijru5HOPmYo5zHxx749iLZ8h5Vv+G+i9Cjp8FASqDOYqdMlpDrD0pWjJ1lOgZ7k6NHwvCWZXAlhR2pvByJodyOV7M54P5YRQ3J/NgHg8WUbcB8QriCOJDxJeIHxGXEY8QdxEXufMB327lyDReHsLuAo6Wc7SMI4UczuatdN5M4c0UDqSyM42tGWzNYFs629LZns72dHamsTONF1LZlcauNPaksTedvensy2BvFnuz2J/Dq7m8lcfRfI4X8FEBnxbxbRk/D+HSUK4N5VYl90dzr4YL0/h5IZdXcXsbjw8gjiO+Q1xG/I64I+9VNzT+abYm2R9I1GmUzAvqEU8Q9wzg+RbxIQ9f49YLfDOFM6P5cAjHS3m/iKP5vJ7G3nh2x7Mzjg0xPB/F4kjmRzI3itmRzAxlWihTQ2SbHGnIJmmdMX6M9pVzdyo8GDqAco/WlGuJOsUuslVBfssmm+F1J1uvzNYrc/oZ5+tNivXKYicK7CnQUGxLqR0zI5TPxRgtiDedG2s8PUJRHcRYf6p8qfJg7N/1OE/GuDNK4o0/82M6rM603FRoPy++0xg/cjUkmpNkRZKGWFtCJAdrlYmfqo2vuo2vup2fqp2fqmOAqk2gShGoJljFXz6DJBtZ6f9DNcHWhFkrQ2yIsFVG2BGpUURriNEQryHRnmQNGX2R3nXyHSjUUerEYL2y3MVopJtZlXvbcZ7tavzaTg9uMz/KeGkCK1JZnMSmgewaw94pnFjH76cQ1xH35DdFcRbxCeIojQeo3caDlVyZyQ/VfDKUtwvZn8POdDYksSKBScGM9GOQ5PvpSLaONB3JWuK1RGuJtCdUS6Ad/nb4SUJHhbclXio8LZ/y+rTA1QIXc/r1wbE3Dr3Q9sS+B5puz5DzrP5p/bcgx8+CQEsZOZLEidEQb0+KlmwdA/WM9WZeBKsS2JDE5iT2pPNqDu8W8/FgvhvGb+O5O5vaJdSvRuxGvIU4TvMniPOIy4hriAdq8T033uDjxbw6in2lvFrK2wM5lMcb2byezv4U9iWwJ55d8exIZG0SK1NYlcyqZNYksyaZtUmsTWJ9IhuS2JjIpiS2JLMlme3JbE1maxrb0tmRzouZvJzJwSzezOTtTN7L4uM8vi7kXBE/FvFrCdcGc204v1RzYSoXZ3F5ATeWc28r9QcR7yIuIK4i7si7bc2NPK7jbq28RFDbcjTaskstDdnuIG4gfkN8R90pHr/NzU1cmMenYzg5hA8GcqKEI9m8msTBJPYlsDOO9dGsimJZFAujWBDFnDBmhTIzhKkhTDZonWr/Pw3ZRnozzJtKLyo8GCJtsrkx2I1BLq1Ho4WGd508A3ty9cpcPXl6il0UA10p1lFgS4ktFY6Mc2dVaoeVKW2WJpjOjVZOC2ViAON9GefDOM+/72pvqtypcmdqkGJpUve12erVmZZLknqN8CTfgZhehPUgRkWsxijcRulnqfBRmXirzbxVbb1VbX1UZj4qM19LM39LYykaI+BffAaqCbQiSJrx2iiDbQmzI0xDuD1R9kTbE2tPgpZEe1K1pNqToSFLQ46Wgr6UOFKqZ7Cbcoi7omKAcrS38UR/0+nBJvMijRZHszSODTlsH8T2IewZx+mNPP4UcaezeIJ4griJOIs4hTiK2E/Ddu4v59psvq3ixEDezGdfJttTWZvC3FgmhjHMgxI9+TpyHclyJL0f8VpiHIjSEqolSIO/Hb62+NriY4WPCm81Xio8LfCwZIAFbpa4WuBqgd4cx97oesvIse/xDDnP6p/WfwtypFCcYDWh1kTYEWVPrL38JZ2rY6grk/xZGs36JLYksy2RvZm8mc+JgXw+jB+ruDaZh/NpXIHYgjgoe0I3f4O4jriP+J2mz7m+jw9myeLmYBFvl/JuGQfSeDmF3cnsSGRrPBsT2JDA2iSWJbAkUe5liSxLZHkCyxNYEc/zCaxKYHUiaxNZm8iGRDYksjGFjSlsSmVbKjvS2JXOvnT2p/F6Okey+CCPj/P5NJ8vC/iujO+HcGEUv43jag3Xp3F9BtfncnM5t9YjjiI+RVxA/GG4UX1C3SMa6qivp75Rdq2W3HeE9LRTbzhcvYW4RP331H+GeI+HL/DDc5wew6kKPhzIe/kcTuPNZA4msSeebTGsj2RlBMsiWBTJ/AjmRDA7nOlhTJXedYKYGMREwz5bVQCj/VpjRis8GNpyu+PGIDcGulLqJlsVFBg635V8F2W+K4VulPSnRE+RliJbhjoy1Y8lMaxNMXs+XrEoktnBTAmkxpBtWu3NRK+/6Uk+TPBkmj/LE7vsKNZuK7SbF2EyTE+6mkQVsZZEq4m0VoTamPpbmXmrzTzVbT2s2npYtfW0MvNWm/iojX1VSok3vup/+Rmgxl+yH7VRBNsoA20J1RCqJUxLhJYoLTFa4hxI0JKiJdWeVA0ZGrLsyXGgQEeBEwXuFHhS4skQL0Z7Kyf6m8wKNpkfwrpEVsWxKYM9g9gzlP1VfL8N8YNSPEYIRB3iMuIbxCeItxG7adjAncVcqOHTSt4t4bVc9qSzJZXn05gRwxhfBrtQ5ESBI7n9yNKT6ECcjmgHwrQE2xOgwc8OPzt8rPG1wlstU8dDhYclbpb0t6S/JXpLnMzR9ZGFjrbnM+Q8q39a/13IkXM/7YjWkGBPipYMB0r0jPFmdigrYtmQxLYUXkxlfzaHizk1lG/H8GsNt2dRJ/mnvYQ4jDiJ+Azxq3xH+eAnTq/m+GQODGZPPq8U8Fo+r6TxQgy7EtmRwOZ41sSxIo4lCSxIZEESC+Jae2EsC2NZHMPiGJbEsDSWZTEsj2VlLCtjWR3L6ljWJbIu0aB+EtmazM5kXkxidwr7M3gzh7dzeTuHd/M4UczpUr4r5echXB7B9SpuVnNjMjdmcWMBt9dwbxcNxxDnEDcQDxH1BilTS3M9jY2tKQmttm9NiEZELeIB4ibiF8Q5xLvc3c7P8/lmAp8N58MS3svhSDqHUzhg8GRbF8nqSJZHsjCSeZE8Fykbt0wNYUowk4OpCaYmmOqgVuqM8GWEL5WeVHpQ8efbnUFulLjIVgWFrhS6KgpdFQWuRoWulA6gxI0iJ0ocKHdkgjdLo9mYbvx8HIvDmRPIDD+m+jHZX1HjZzLBx2iCDzXef9NT/ZgZxOLY9huyVdsK7VYkdR3jQkYvYroRa0mSxixB2z7Mtp2vpZmHqo2ndUc3dTs3dTs3K1MPtbGXWuGjwk+Fn0rOnP2fLWeYWuFvjb81ATaKQFtloC3BWoK1hGkJdyDCgWgHYnXEOZCsI9WBVHvS7MnQkK0l34HsfmR7kOlNnhelXlR6MdbHaJqf6Vx/403x7ZYHsyGOg2UcGMQLhRyfzNVD3LrGY+ku+A7iIuIc4iTiFcRO6lZxfSbnxvJxOUdKOJjNzgzWZxvPT1LWBDPMk4EuFDuTpydLT5JORk64A8FaArT4a/Czw9cGP2vD9poaTzWeKtxVuKlk5Ogt0PVBZxivPUPOs/qH9d+CnACDxAm3JcpOTphO0ZKvp9KLqaHKRbHKlfFsTOSFdF7J5fVCjg3m81H8WMPNmTxahFhtkDjHEZ8hvpUvYH4+z9G97BrFy2XsKWBfHvty2JPGtijWBrEpmrXRLI9hYQyzYpmawOREpiYyM4rnIuWeG8HcCOaHMz+cBeEsCGdROEvDWRrOsghWRLAygrXRrItmfQzrY9gQy4Y4NsSxMZ7NiWxP5cUsdmexO4s9Oewv5HABH2dxLpufi/htEFcquD6aWzXcns3l2VxaxvXt3DtE4+eIXxH3EJKOkbx5Gmlspt5gbv204pENCx4bqPMF4l3qXuLmMn6cxJeVfFLCBzkcy+StVA4k8lIc22LYFM3aGBZFMT+KeZGy1pHedaaEMsmwSy0nIPjL4dYjPBnhyTBPKqXDHXd51FbmRpkbpW6KUjdFsZtSbnfKPChzo1TPUFcm+DIvklUJbExhRQSLgpjlywwfpvsxNdBkkr9ZtbdRjS9T/q6n+cu8WZ9lOT/SdIwLZdZkmxNvTqyVSaKmY7SmU4BVB0+Ldm4W7V1UHV1UHV3U7VzVJu5qpZcKb1VriJnX37WPWvK/UPhZK/2slf42RgG2xgF2BDkQ5ECIA+E6IhyI1snISXUkTUeaA2n2ZNqT7UCujiw96T6k+JHpQ5E3Q7yo8lZO8TaZ62W6KqTd6kC2RLIvk1dyeTmPI5UcX8Lnn/PLfRqE4T/fZcSXiDcRexCbuL+IS9P4ropTFbxdyN5ctuYbL0sznRbBGF8q3ClzIV9PpiPJOuJ1xOiI0BGiJdCBAHulvwY/W/ys8bXBxxpvNV5WeKoZoMZdjZsKZxV6SxzNW6nzDDnP6h/W3wLHSEKOEjOlnGnRxoR2Jsq2pgop5aKtsaKtqaKdibKdmbKDgTedzBSd2yj/ksnWp71SzizoiLoj1oaLHLsuCruuaLoqtd2V2m5Kh+4Kpx5Kpx5P3eX0kgNypCXpABWBTyFHesVJ1zKoP+MDWBRrsipRsTaezQnszeJwEe8W8fEQzo7l1xncWsjD1TTuQOxDvI/4DPEN4jvEL8q67zmxl6XD2FrGS4XsLuDFLLYlsymOTbFsTlA+H8nSSOZFMCOCKZFMjKE6jolxTA1nepjcs0KZHcLsEJ4L4bkQ5gYzP4T5ISwIZXEoi0NZGsqqiNZeHWXoGNbEsiGRLalsS2drOtsy2JHLK7kcz+LzTL7M5esCzhXz01CujuPmNK7P4vI8Li3l2ibu7Ud8hPgRIUUqPJI3vCXvammfrcHwutNKnTrEXcRlg9Y5yaM9XFrEd2P5opxPi/goj2OZHErh5UReTGBbAhsTWB7J4kgWRbAgnLlhzA5lZihTQpkcxqQQaoKpDm493BnrzRhPRnky0oMRnvLhzlAPhkjuOP+jB7lRPoByFypdGO/N3AhWJrI6kVWxrciZ6cvMQGYGGU/yMxnvTY0fU3yZ7MdkP6b6PtUBrE7rtaPMcUVan+EupPUm04IiHWka01i7dpHW7UJUZr6WbT0t2rmZt3Ht09Zd1c5dZTZAZeSpwtsSX8t/iJxWlaP7k8pJ1bdSJ8OBTOlZxZl0b1J8yfSmwIfB3oz0Ma7xbjPTx3Sul2JNmNHmGDZGsTOJN0o4UsHeUZw4yE8/0SilKElJsj8hjiNeo/lFHq3mxlx+nswXozg2iFcL2JXHujTmRTLRn1EeDHYjX0+6rhU5kQ6EawnVEmJHsK3hTMcaXyuDH4HKQB0V/S1xtZCXCBx7oTOonL5d0XRB0wXbzth0wrqzQt0Ry45Kiw7yz5o92yt7tKN7O0X39nRvT7d2dG1L1zZ/g5yW8AJT6RbwGXL+b61/hRxTBaYK2iqQ/ldoa0wHY0U7E/mzo4myg5mik6lRxzZKKf3zL+JGSv+U7sKkC1CrDlh1wHxkFqMAACAASURBVKYjdp2w6yQnPmm6KaTYQYcecgqhcy9cesuBbJ4WeFniY6mQphlB1oTZKSPsiLElSUO2jhI943yZFsTiSNbGsjWRl1I4kMmRbL7M44cyLlVxdTY3VnHnJR6+Se37yD4i59uJKwHipP1Hs9hdyoFyXihma77pxmzjtamKlYksj2VpNEujmRvCnFD5NFJ6w6gJZmIQU0Jae2oIU0OYHszMYGYGMzuIOcHMDWGuBJ4wFoSxJJwl4SyNYHkEyyNYEcnz0ayKYmUkq6JYE8uGeDYlsjWFHWm8mM4bubyVyzt5HCvkZCmnh/DFML4dyfdj+WUCl6dyYw53FtKwBvEC4i3EVcQT2ay6ro77dTwSNAnuC+4LHrVQp8lgqCNoqKXxd8RFxJc0HeL2Si7UcKaEM0WcLuC9bF5N56UUtqexPR3pm+DqCJaFsjCU50KYEcbUcKZGMCWcyaFMDmZSAFN8meLNZC8meFHtyVgvxhjAU+HJUE9G+JlUeCkGuTHQRbYgq3RnhCsTPah2ZoIL84LZnGb8Yl6HjSnKpeEsCGJeMHMDmRPI7EBmBDA1gKkB1PhR48NEb2q8mebD7ADmhbAgnN2DHDbkWc2K6TTUgww7EqxItie9n2mEFeFWxqFqkxCVcZDaNEBl4m9p7G9p7Guu9DV/KgjOggBz/Czk4NH/2f7WSn9rpeR/IVlgBGtMgzXG0ltOuOEtJ9qBWAfiHEiSoup0pOtI15Ep+ZzqSXcn3Z0sd3LcKXanfIBypIdyrBc13swKYGEYz0ezPpHtGewtZv9Q9o7h4/U8/MIwSv0DcRVxBfEx4h0a9/BgLdfmc7aGD4fyVhEHMtmTxuYEloRT48tQN4qcyXEhzYUUZ6MkvTLBkXgd8fYk2BJrcCUIsSJYjb8lfhb4WOBpjocFA/rg1of+vQ25bf+HvfOOivrc3v0HrElOyknPiY1m0ABK70OZGQaG3nuv0kW6CnZsKGDF3nvv0USNJU3TTUw31Vhir9T3/vH9Dmhizr0nJ+d3T+5lr71mIf8kcWXx4dnv3s/zFIOe5GUpUOc3q2sSePo9xr1y5/lH9DsuQ5/szZO9eaIXj/fk8Z481kvvsV56j/Ts9lAP/YfltFD9Ht31u3fvQs7/o/VPkNNbj4f0ebgbD3fjke73XQs/qvt/RZqkPTBwuoM3Lz5C30fo9zf6/40Bj2L0GIaPYfSEhBxMnsLkqX+KnD6SJ4e+y4Bunobd1AZoDQg2Is6UDAtGujLZkzkaFvuzOpBNoeyK5FAUn8dyNpWLpVycwsVFXN7G9cPceIeWTxDfI36wFG8POjOXQznsjGRrFEsi9eeGP9oQ3HuGf7epPtR4MVHFRJVsOD/WnWo3qhSMdmWUC5UujHJnpDsjPRjp0QmeDupMcGeCO5PcqfGgxpPJnkxVMVXFdBXTVcxUU+dFvZoGHXLmedOoZbEfSwNYGcSqYNZHsj6STdFsi2FvAgdTOJ7BiSxO5fNVEWdLuVjJ9dG0TETMRCxFvIn4BnEN0Ypop7WdO7qrHelw566EnHZEG23t3BXcENy6Q+sviG8Qb3JrNRem82k+p7J4L4VjCbwSw5ZIVoexIog1WlZrWOLFPBV1SqaqmKhirJrRKkarGO3BKAWjXRjtSLUN1XaMtKXcjjI7mTrykM2OXAe9YbZkWpFlTa4VhTYU2VJmS6U5k+xoULI0iDWRD62I6LkwQG+2DzVu1LgxUcFEBeNdGefCGFeqXah0ZKQTVc5UOTDGkcluzPZjUfhjS2Kfn+r/2HBH4gYTbIyfMV7G+p6G+p799T37d/fop+/eV9+9r75bHz3FiyhelJNGf9UdWdf/58iRNtbURngZy8jR6pATYEqQKcGDCDUlbBDhZoSaEzGU8KFEWhJjSbwlabb6OXb6hQ4UOzDSlYlKpvswy59F4axJYFsa21M5OZ5LuxFndEPUK4jztHxE21Gat3NjKRdm8nUVJ/I5nMy+KHaEsy6Ied6MVzDcjmRLoocSYqEfZN49wEzffxABJgQaEtSfgAF49cNTuj3qg+uLuPwDxxewfwH757F5Xg4MtXgG86cxe4qXn8T8KcyfYvCTDPr7fXJHmmFI0W2S3JF+DkguJM/05ulePNmbv9+DnL/pkCMFVPfo3oWc/6frr4Icp77dXA26exrqexnia0ioCUnm5FgxQUmthgX+rAhiXTBbwtkTw5E4zqRwIYdro7k2k2uruLmHu8dp+oDmjxGXBohvbb5ayvZhbI5heyQr/ZkbwMyA7tO01Hgx3pOx7lQpqFJQ7SbDpoM3EnJGulEptTsj3Rjpxig3RrlR5Ua1O2PdGOfORA8melDjQY0HU5QydaapqfWi1kumjqxyNMz3YaGOOsuCWBbEyiBWB7M+lG0R7I7h1QSOJHEik49z+KaQH4u5UMqVSm6N4fp0zq3m0kHEZ4grsv90eys3m+TDnY57nRbd606T4JaguRlxE3EBcRpxkJYN/FjDl5W8l8MbqRxO4ZUEtkSyNpBNAWzwY5WWRd7M0TBDwzQNNRqqVVSrqPJktBvVrlQ5McaeMQ5U2THKjgp7SuwYYSdbUOfYM0wCjx0F9oywp8SBMgeqHCh/mTp31kZ235L0+JrIHo3+zPFhtg+T3alxY5KbjJwO6lQ4MMqFsQrGK5jkxkxvFkc8vi6l/3Rtz1InEl4ixJBgEwIG9VAZ6Du+gGd/fc/++h79cO+Le1/c+iAhx/UfD2jnF2WL5d/2/VsD+gpDfTej7m5G+n8MORFDiR5KvCWp1npZtuTaU2RHhTPjPJjqRZ2WxmBWxrA5iW3xHB7Op/O5fAxxAdGCuEP7RVq/ov092g5wdwNX5/NTDZ+WcDKbg3G8EsO2CJYFUauhQkGmLbFDCR9CiEX3ILNuQYMIHEiQEYEG+A9AI9209sOjL4o+uOqEjsML2Equa88x5B7qdCGnq/5g/VWQ49xf391AX23YzdsIP2MiBpFuyXBHJqup17LIn5WBrAtmWzj7Y3kjgR+yuVzEjfHcmsutddx9hda3afsY8S3iTJ/L+3vuq2RxKKtD2RTCQi/qfZjqwyQ14zyoUjDKhZHOjHSWGdPR0jcrnKlUUKHrSgWVCkYqGKlgtCtVboxR3Kd1Jrkz2VPeLJC1jpqZamaqqVMxS80cNfO8WaCjzmI/Fvmy2J+lfqwMZH0wW8PZFcn+GA7H83YKp7L5Kp9vC/ixiItlnBvDt3X8sJIb+xAfIy50GlG3tXe6sXWw57bOErSlBXEXcR1xFvEp4g1ureOnej4s5VgmR1I5nML+WLaHsi2YzYGs8WOplnka6jXUapiiYaKasSrGKBnnwVhXxrkwzomxjlQ7UO1ApQMVDpQ4MMKeQgfyHMixJc+BIidKHClxoNSBSnvGODLennka1kf33BT3yLJgZquZ4UmdimnuTHZnso46E3TgqXJmlAtj3ahRU+fLvJAeC8IfbYx4qtiWLDMiDQgeQJAxfgN7qgy6Of/jd5HzwHbRLUn/th+IHI9/HTmRlp3IibMk2ZJMa7JtyLel1JFqNyaqmO7NrACWRLIulu3R7EvhSBWfrafpK11u7BXaf6b9c8RbtO7h7mqu1PFjNV+M4Fgir8WzM5o1ocz2p1pJjh2xFkRYEGauH2rWLXiwXqApQUYEGRJggKa/nKnj0Re3vjJyHF/E4QXsJD+C5xj6nIwc86e7kNNVf7T+KshxG9Dd01BfY6SvNZIX1XLsqFAwVU2DNwt8We7P+iC2h/NqHG8l8VMBV8q4NZnbC7iziZZXEe8gTiHO9flpH7vGsDyFldGsDmWFLwu8mKFhkoaxSqrcGelKhbPc5U73tfxNFyoUlLnJXaGgwq0TPKMVjFHI1BnnzgR3JnpQ40nNvdRRM0MlI6dOzSw1czTM82a+D41aGqV9Ni2LfFnmz+oANoSwLYzdEewN43As76TycRanc/g6n5+KOTuK81P5uY4LC7m1DfEW4lvdkK1Zpo60TSA97dwU3GrnbgstLYgmxB2dNc43iBNc28ynU3ijkGOZvJnG8UQOx7ArhK3BrPdjmZZGDQ1e1Hox3Utenp6kZKIn492ZoGCCC+NdGOfIGEeqHRnlSJkDJZILpyOFDpQ4U+FKhRNldpTaUGXPeGeWBrEyhFVhrAhhsT/zfKhTMVPJNHemeDDZnRp3mToTFYxXMN6DalfGujFdy/yIh+aHPzpZTZkdqcYkDiTWhHBjAgz0NAbdvAx6qg16e/bv/q8i54Ht2g/Xfij64zZAX/KW9TDs9seQE2FFxFCiLIgdQpIl6VZkWZFrRZE9la6Mc6dGxQwt80NZFcHOcPbF8koeb9Vx4W353a7lDu3XaD9L+ynEUcRWmhZyfTLnRnEinSNJ7I5hfQQLApmkptCeBHNiLIiwINyse+hg/RBT+WYo0BDvAXIuuGc/3Puh6IPzizj1kQeMtroXHUnoWDzThZyu+qP1l0COcx88DPQlxwE/I0JNSbSgyIlqJdPUNGhYoGWlPxuD2B3BkSTezeDnEq5VcXsmTctp2U7bYcT7iM8Qp/72Wi0zopgfzfoklgQyz4NGDVPVjFNR7cEoBZUunbApsafEnlIHSh0oc5S/WeZMuSulCrnLXSl3pcKVClcqXal0ZbQr1a4ydca7McGNSR5M0r3rSNSZpmSGSl4oaNBpnbka5mqY502jD40+LPBmkS/L/VgTyKZgtoayPZj9kbwez9vJvJvGqWF8XcAPJVwZx+XxXKjhl1ncWos4gvhaZ43TRFsbdwXXBVcElwXXBLdaaG6irZl2KVH7ri5j9Cda3+bsak7V8EEJ7+fyYTrvJrMvnO2hbApklR+LvJnrRb2aOjW1aqarmapmspIaz3uo4Mx4Z8Y6UeXMSCfKnOQTzjJn3fjRhZG2VNlR40Kdir2ZL2yJ770qlCUBLAlgsT/zfWjwotaD6R468LgxSSd3apRMUDLZi4YgGiMfmeGvP8KWuH7EDiDOhDhTwgfia6Cv7q/vZdDbx+RRz/76nv35LXLc+jy4Xfvi0u8Bn4p+uPbHrT9uBrgP0Hc31PM07OZp+K8hJ9yMSEsiLYmyIMqCWHMSLEiVskQtKbShzJnRCsZ5MFXDrECWhbA9mANR7Mvg1SpOb6XtJ0Q7rS20NNF6hbYziHcR+xGraavj1ng+zeOtdPbFsSmSpSHU+lDmRNpQEiyIsSDSTF/OLhpIkDEBRmgMZeQodUsELtKJ0j12n9ISgTxe60JOV/2x+qsgR2WgrzHC15hAYyJNSbek1JUJXtSqmaNhqS/rAtgayoFY3sngkwIuVHFzMnfn0b4OsQ/xBuIU4qveH69mVRFTQ2iMYkkUM92Z5shcLyZ4UOXBSAXlzpQ6UuIgd5EtRbaMsKPYnhIHSh0pc6LUmRJXiqVWUOJKiStlLpS5Uu6io46CKjeqOtbYPJjgyQRPajzl852pKqapOqkjaR3paWe2bot6rpr5XizyZpkvqwPYEMi2MPZEsF8yCY3heBLvZ/J5HueLuFrGtdFcnciVmdxZhTiIOIW4LO84NQluCi4LLgquCJpa5TSEtjZa22ht0+WQ3kJ8T9Mb/LKO72r5ooLPcvk4g0Mx7Ilmezjrg1jlx2IfGjXM1VCvksEzVckUT2p0g8QJLrLcGesiU6fCiXJnRrowzp2JnkxwZbwDU1xZoGVtBAey/7Ez8aG1oSzxZ5EvC7TM95bHa9KiuaR15KcddyZ5MkPLnDDmR3Sb4U+lCxmmRPUjcSAxxoQZEGiAn0EPH8PeXgMeUQ/o7dlf33MAHv1wl7zR+qKQjov7yt/57afi9z89JKO/ngYoDKQefPHkBNpTowZ8eYkDSVtKJkW5NlQ7Ei5K1VuTFRT68+iQLb4cjCCA6nsyuP4LC68R9sNmltoFty5zZ1ztHyKOILYjJhDSw0/lPNBHgcT2R7NqnBm+zPWnTw7ks2JsyDajAgpu8iUIBP8TfA2wktHHWl1zbUvzn1x7oNDH+xexPYfsr20RJ0u5HTVH6y/CnK8DGWJE2RE1EAyrah0Y5o39Rrm+9wncT7I4asSLk/kZh3NyxBbEa8h3kGcRnwzaGMlC7OYHUdjNDN9qLZmgjX1ar0xCioUlDtT7MgIO4bbUWRLkT3DbSi0lb8utqfYkVJHSp11vHGl2PUe5LhQ7iJTp+NdR9omkA53JngwUSlTp2OHrZM6OrkzS8UsFQ2eNHgyW8k8NYu8WaplpR/botgVxe4odkewO4wDURxN4sN0zqRxOZc7Fdyp5tp4rs6kaTXiFcQ5xBXEbdpauS24okNOWzuiBSFo00XvtHZ4sl1HnKHlKFdW8P1EvijiVDZHk3g1gT0xbA1jXSCr/FimZZGWOSpmqahTMkPJVM/OIViNCzUd1HGmyplRzox0otqFSdLiuIKpzsxWsiGc/emP70rssTW227owlvoyX0WDB/Vu1HtQ58EMT2o9mOYuv+vIO2zuzA5iWeLDC2IeHqsix4JEE+JfItWccCO8X0DzD/wNewaa/E0z4BHX5/HU5cS495N/i1f0kf0s/kB79MdzAJ4DUBqgMkT1ryMnykqncsyJNiPenERzUixIH0qODcMdKXWhUkG1kqm+zAtgnYZDET1eS2JbKgfGcmY/d85x+y53BTdauHmZO18j3kLsQDQipnFxDJ+N4Ggqu2PYEMXiIKaoKHMizVx2Iogc3IWcrvq/V3p6ejJsunXr3r17j+76fxZy7r0ANXwMw8cxeQKjJzCRYPO03sBn9E2fYdCzelIYlIQciTf2fXDsp+cyoJv7AH1vI3wG4NefCBPSrShV6I1XM13DLA0LtKz2Z0sweyM5lsSpPM6Uc3ka12dzcTbiDcRbiLcQZy0+X828NGYlMCOCKf7UqJikYIIT45wotafIiREOFDow3I48WwpsyLVhhAPDHR/wme9EvhMFzhS6UOTMCNf7tE6Fq/yuM8pNXp6Weqy7fDcqyx1pzubJdN3hzkylzJ46JXVK6qXrUTVzvZivYYGGlQGsCWB9AJuC2CY55cRxJI7P4vkxifOZ/FLIpTKujud6PdeW0n4A8THiMqKVVsE1wWXBbUFba6dVwV2dF/VdQXOHPcEXiCPcXMn3E/gon/cKOZzG7mh2RLAnml1RrPWnUckiDfO95JSd6Z7yEdJUJVMVck9RMMmNie5MdGOiG6PtmOXLXC0TrKmxYm0Irw975HDWQzvj2BzFmmAWa2lUM0fFXOm/2ptZKqa7U+tBnYp6L2YomeJBrYYt2c9vzRswUUWKCWmmpJsRZUSEMaEmBBvhb6TvZ9TT17Cnt0EvjWEvCQxKAxkVHez5Xaj0/Wft2Q9lf5T9UUlPIIaoTFCZoDHBeyDepviY4meKn+nvqxxzIi2INidGN1hLsiDFgrShZFiSbU2BA6WujPJkrDfTNaz3Zbsfe6LYl86+ERxu4MxbtN7lRivX27nTgriB+BLxKmIFYja3pnCmkrczeSWe7dGsDGOWDxM8KLQhw5IEnZl3+GACBuJj+LvIce2HUz8c+urb99GzeVHPWgeeIc8w5BnMntZ7+SkGP60/6Ck9kyf1TZ7Ul1xFBjyh3/9xvb6Pd+vzmL50oCNd5/wmuk2vCzn/n9Z/PXLQGuLbn4ABssQpUzBJRa2GORoW+7IugO0hHIjkzRROF/BtJdcbuDSb68sRhxDHpBj5F45MY24y9TFMD2GSlolK/XEKxjpR5USxPcMdKbSnwJ58W/JsybMh14bhDgx3/PVnoSP5TuQ5UeAsU2eECyNcOrWO9K4jIUeizmgdcsbq5E7H085kT6bqqDNDxUwlM1XMVMn4qVfRoGaOl0ydZf4s82dFAGuC2BDKlkh2xXAghvej+TKW71M5m825Qi5Vcq2Gq7O4vY62Q4ivENcQLTS1c1NwWyBa5MFai5CRI53vNAvaW3U7bB/SvIcLjXw1iRPFvJHH4QwOJMkTtk0BrPNlhYbFGhpVzFIyw5PpSqYqma6k1o1aBbUKpum8GOR2pV7NLCX1Cpb5sD+R45ndX01iRzQbI1gdxFItC71oVLPAi0ZvGjXMVjHTnWluTHdnppI6JXVqFoXpr0p4fF5473IH0gaSZkaqBVGmhJoQYkKACX7G+Bnr+xp18zbs7m3YXQKD0kCmjkf/w11/jlvJOSoBsjIURvgZfwvIsfiPuTEWZA4hKShpA4l3ZIsG/IdGOFChZIqbyZrWObLRj92R3AghQP5HJvM169w6zw3W7jcxrUWWm4hvkO8hdiMWMSd6fwwiveyOZjArmjWhzJfyxRPRtiQbUmyObGDZeQEmqI16kJOV/3P1n8/cnyN8R9A8ADiTMm2ZaQbk9XM9GaeN8t92RjAzlAORnMyla8L+Gk0txv5eRZiO2If4nXEp32/38CKXBpimRHO5AC9CZqeVe76o1wZ5Ui5I0V2FDiQb0++PXl25NrKXeDwgM5zINeRXGfynMh3psBFRx1XinXgKe9YnnaTe7Qbo92ocpfPSyd4MMGTSR6d1Jmm1L3uKJmuolZFrYo6NfVeNHgxS8McDQt8WeDLIj8W+7MiiDVhbIxiZySvh3MymlMJfJnKd8M4O5xLo7gymV/qub6GtiOdh6Kt7TRLHgQttLV1IkfqNmm81oy4jvgB8QG393NpHe+N5oMK3ivmWBb7YtgRys4QdoWzTstKbxZrmKemQcVMFTPUzFAzw52ZbsxwY7o7093lsdh0dxqUzFAwS8FqPw4mczK3+5up7ItgWzgbQlkdwFItizQs9GaRNwu1zFUzW0W9B7VuTHdlhidztSwK7rY28ZnZ/noV9mSbkTGIVHMSLYg2I8SEwIH4D0RrgtYEH2O00q/wRvxW6PyT9uyPst/vtqo/qv6oB+BlgJcBXkb/MnKizIky/w1yLEizJN2STBty7Cl0pcyTkRrGeTPbh+W+bA/n1SQOZ3FsJKfXcO4Dmpu42salFm7eRpxHfIo4gFjN3TrOj+NUIcdS2B/LlnCW+FKvosKOAktSzYkzI8qMUDMCB+FjgrcJGh11pL8cRT9c+nUhp6v+M/Xfjxw/IwINCDciyYwCe6o8mOZFvYZGH1b6sjWIfWEcieXDDL4r4twY7izixzmIQ7TuRhxFfDb46GRmRjEjnGlBTNT2qlb2GqnoWe5EqSPFjuTbkmcndwdvcm1lCP2qc+3JcSDHkVxHmTr5HRM2Z4pdKHXu1DqV97BnlILR0kKBe6ct2yQPajxk6kz1pFbJNCVTlUxTMU1FrZoZ0t2ohgYNs32YrWWelvm+LApgaTArw1gXzs4IDkbzZgLvJXM6lTM5/FzMpSrOj+dCPdfW0XoMcQZxHdHcaXsjIadJd6bT+aLTpqPOz7SepvlNvmzgyxo+HslbeRxMZn8U+yPYF85Wf/lEdLGGuV40aKjTUKehQcksTxo8qfek3pOZSvmLBk9mOrNYxYEEPip84sNcjsSyN4TNQawLZJU/y7Us82aJD0u1LPVljgdzVMz2lF+25nmzMqzHhvhnVkQ8Oc6J7IEMG0SWOQmDiB5EvGX3QFMCTPE1lZ9SfEzQGuFtjMYYtRFqo/u0zu+1coAMld9r9QCZNxpDNIZojP8ocizuQ07iEFKsSLcmw4Zse/JdKPKg3IvRGqb4MNeXjaHsj+dIMscL+KiOr3YjbnOrnSvtXLuLuIr4DnEcsZHWOVyt4ZtSTmZxKJEdEawOYL4PYx0ptibTnHgpoNqMgJfRmuJtgrexnsYItQFKAxk5rv27kNNV/5n6L0eOZ38CDAkxINqENHNGODFWSa0XDRoWa1kdwPYQ9kfwRjyfZPFTKZcmcHMh5xcijtG2H/Em4u3+GwuZGszUICZpGat+uNL9oVKXHiWO8vtNjg3DdJ1t29m59g/oHAeyHchyJMeRHCed1tFRp8iFYheKXWStU95xtePKSIUsd6rcde86Hoz3kFeo5f1pT6Ypmapiioqpaqapme4lG77Ve9PgQ4OWWT7M1jLfj4WBLAlhWShro9gSy/5EjiRzMpnTGXyfz8VSLlVxbiLnZ3F1Pa3HEWd09zottLXT2k5rOy1C7tZ22gRtHT5sLYjbsiPO1a2cm8enYzlRxDvZvJEm5+vsCWJ7IBv8WenLAh/mSv+GPsxWM0fFHJ2T6Sy1/EWDgkYV28J5K7vHxwU930rmYCj7gtnoz5oAVvuxwpcVvizVssyXpX7Mdme2knleNPqw2J8VYWyMe3RryoszPCk1Z5gxBZZkWxJpSIgx8Va9AkzxM0WrM3L2keSOMRpjvExQG6M2RmWE0hClIZ4GD24JOV6/05oBaAbgbYCPIT6GuqnUn4ScZCtSrUmzJcueXGcK3SlRUaahSss0X1YE80q0/tFY3kjl3dF8vARxmWbBLcG1NtpuIM4hTtK+BbGIphn8PJpP8jmewt5o1gez1J/JLlTYk21BkhnRZoSZEWiG7yB8BuJjou9trOclbUMMwK0/igFdyOmq/0z9tyNnAIHGhBkSN5CMoZS7MEnFTE3nevTOEA5GcyKRz3O4UMHVGq40cmsD4jDiKOLtR75bRWM8taFM8mWsFyM9HilzfniEQ7cCewrsybMn01o2/sqyvo86OXYP6Gx7htmT6UC2A9kOOq3jRIEzw50Y7sQIZ0Y4y1qnTLracaFCtz8taR15m0CyxnFnorusdaZ4MEXJZBWTVUxRM0WijobpGmZ4U6elTkudLw1aZvsxN4DGEBaEsjCKZXFsTGBPIkcSeC+ZrzI5m8+lCi6O5uwkfp7N5Y20Hkd8g7iOaNGl6bTT1kabFKjTSnsLrU20NtHWJu+z3ZVMJE/QtokfZvDpKE4V80E+b6bwWgSvhrMnhK2BrPVnqS+NfszxY44v8zUs8GKBF/M1zPdinkYX36BiSzjHs3q/n9frRAZHYzgcwitBMnLW+LPaj5V+LNeyVMsSH+Z6Mk9JozfLg1gX1WNj7EPronuvCH949BCGDyR/EMMtyTLXCzckyIjoob39JIkjb8dRGwAAIABJREFUIccUH1N8TdCa4D0QzUC8TGTwqIw6wfPbVhmgHiCj5bftbSDzRmuE1ghfY3z+HZUz9NcqJ8WGNFsy7MlxosCNIk+KvCj1Y6w/iwPZHc7xcN6K5eRw3p/BnS9paqJFcFPQdAdxCfExbTvlJYKrE/iqmHfS2R/LtjDWhFDrTpUj+ZYycsLNCTTHzwztSzJyNDoh6D6gCzld9R+r/37kBBkRbkT8S2RbMdKVyV7UeTNHwzI/1geyO5xDMbybzFd5/DKSG9O4OA+xj9a9iPf0xBsP7Sphsj8zwxivocpTr9y19wjHhwvt9XPsyLUj254MKzIsZep0ICfH7j7F09HD7MiyI9OBzPu1jgSe4U4UOcnIkakjKR5XmTrShE3eYVMwzp0JbjJyanRPOzVKJqll6kz1YqoX07yZrpGzR2f6UudLgz+zA5kbzNxwaiOoj2FJLOtj2BPNsVhOJfFNBj8XcL6U89X8OJmf5vLLJlrfQHyDaJEt19radYKmCXFX/mxuoqmVJsEdwQ1B623EGcRRmtZwdgZfjuKT4byfxYkUDkdxIJwdIawPZLk/CwOY6888fxq9WejNQl1EkNQLNWwI5Xj2Y6dKX3wvm2MJvBHHGxHs9WOzP+sDWBvImgBW+bJcK3tXL9TQqGahljXhbEt6YlPcIwt9mepM5WBGDCTvJbIHkTpYP9ZUP/wl/dCXe/qa6msH4fMb5PiYotFRp0Pr/F6rDfEykNHywO7QN77G+BqjNfmDyIkxJ1ancuKH6MVLyLEi1ZY0e7KcyFVQ4EmhF0UBjPRnrj87QjgezIkw3hvG+xM4e5SbV2mTTIyaEdcQXyIOItYgGrk1le8qeC+Lg/HsjGBjBA2ejHOmwJIUHXKCLPA3x9dUXzuwm0QdtZGeyhAPAz03gy7kdNV/pv6HkWOiQ87Ap/RMn9Y3fYaXn9GTeGP+LEOfw/p57F7AoQ9O9yAnyoiEQeTaMMqNqRrqfJirYZkfGwPZHcbhWN5L5esCLldxs5Zz8xHHuLkd8bGBeL1/QyhV7tSFMFbFaA/KXHoVOvXMtZPhkWVH+lDSh3ZS558jp4M6w+zJdiTHgVzd2nS+E4WOMnJKnO5DTlmH0FEw0q0TOWMVMnIm6YROjZIaJROVnUKnAzn1ftT7yt3gx+xA5gcxJ5TJwUwPZ34kKyLl+Ia34vkkmS8y+GE4F0bx8zi+n8y5OdzeQuubiNuyrJF5I3Uzoo32FpqbaWqTp213BeIu4hLic8QhflnO5xP4sISPCjhdwNEYDkWyN4wtQawJZEkAC/xp9GOBD4u8WaxhsTdLNSzTsMKLlV4cTOLz8qfPjHz2nXRej+VEKm/Gs1XLxkDWBrE2iLUBrNGyUsMyFYtVrNSyxIvFPqyL6L4j+fm1MX+f7kbBQMqHUGhGpgkJBiSakjzkoVjzXoED+ZXK8e3YIzDF2xSNCV4meEnIMURl9OBPCTleBngPePCnjwHeRmgN8THGzxitCRpjNMb4GKM1QTsQXx1sAk0JNCVEF14QNoiIl4l4+X7kWBA3lPghxFvKKifFhnQ7spzIc6HQnUIlIwKo9KXBn00hHAzmeDgnsvhwDN9s5tZ3chJSs5TUdxZxErEJsYi7tfw4kg+H8Xo8e6PYGsUsFWNdybch2ZxocyLNCTUnyAw/U7Qvob1ntiYJHdf+OPXDsS/2ffRs/4F1h/ONhJxnePkpBj/NoKf0TJ7E5El9w79j+ITegCfo/7he38f1+uhSDJ7/G8/jfuRw9976z3Wi7/10nukp/5DPfUe6qnXu7tej+7oqKPfXb+bvj7d9PT19JCY83ufXfWXqf/0KejvIcf0SUyeZJAumc3saT3zZxnyDNYv6Nm8gO3zOLyAcx8U/bt5GPb0MuymeYEIA9KGUuTMKHcmqZjpzXwfFnuzzpddIbweywfpfF/CjUncmUv7LppfRRxHHHzhh+Uv1qhYmUSVgnFqRqv0y9wZ7kK2A1l2pNmSbk2mjTxV+1VnWHZy6F4BJC0X5NnJCwUFDhQ6yj3cgSJHebYmLbCVuFLi1EmgchcqXBkt+eK4UO3COFfGK5igYKIbk6QhmycTpZhRnf/0dC/ZgnqmF3XSu46GWd7M9mGWL3ODmRfCwhCWB7M+lO3hvBLJoRhOpHIqi2+G82MF56u5XMPtOq4tRXxA+w+6dx2BELQKmu8xnJbVj+SFc1vniPMDN1/ni0bereKDUr4q40QKb8VzJJI9wWz0Z50/a0JYF84SP5b5styblRrWqNnkxQ4Ne3z4oZgzhXyazYlUXo9nXxTbw9kcxqowVoSyKpg1gazzZYMPGzSs92KjhtVqNgXr7Urusyb6mUkKii0psSfTjFQzks1IHEzMICIHEW5KqCnBpgSbEqj7ie8/EL+B8qOOz0C8jfU0xmiM8DJCbYDaEI0R0nce+On9f/bpbYSvIf6GBBgRaEygMUEmhJgQYkKYKWG6mJyIl4mUDmLMiRlKzFBiLYmzIt6SBCuSrUm2JsWKFGtSrEm3IcueXEcKXClUUKqkyps6PxYHsjGMvfEcyeaNUr5YSPsHiCY577X5DtevcOU04hXEKm7N5OwoPs/nZAqvxrA5goVBjFOT7UD8UKKHEjOUKDNCTfE3lrf7NIaoB8iu0lLuu5u8RKAn3YTa6cxvLJ/D4jnMn8XsWV5+BtNnMH1aX8rBGvAE/R+n7xP0eZwXH+XFR5GR8wjPPqxDzkP8vTdPPMRjD+s9+hCP9NZ7pLfew730e/XU69VTX+re3bv16E6vbvrdu9FDDyk68oGfXfWXqf+LyDHVIeflpzB7Wk/6vcnmeT2bF7B/DocXcHkRt37dPA16ehl283mBSEPSLXXIUXciZ70fu0N5PZaPMvi+lFs13G3kznZaDyNep/2g0Ye1T0xS0hjWvdqVsSr9UUq9MncKXMh2JN2OVFtSrcl8EG/uRU7HzE2iTq4teTbk25JvS4EdhfYU2jPcQe4iR4ocGeFEsTPFzpS4dCKn1JlyZypcqXS5DznjXGXkTHS7DzmST8E0NdNV1Or8p+vV1KuZ7cUcDXM0zPVhYQALA1gcyLIg1oSwOZxdUbwSzdFETqTzSS5nivi5jMujuT2Jmw3c2EHTu7pgt1baW7mj25O+LWiSknWaEXcQNxG3EE2IFsQ1Wj7nwh6+mMMnYzldzkfZfJjO2wkcjmBPCJsD2RjM+hCW+7EqoNf6ANZr2aBilxfHQ/kkgfPD+b6A08M4mcqheHZHszmStRGsimR5BKvCWBvEBn82a9nmwzYfNqvZ7s/uyL9tjnl2jk+PclsKLBnuoJ9iQaI58ebEmcnIiTAlTCcmgl4i6CUCXsJ/4D1Cx0Tf21hPeq7wMpQXgjVGf0JrjQgwIMiQIEOCjQgxJsSYUBNCTQg3JdyUCFMiBxE5iKjBRJsRbUaMxe8gx5oUa9KsSbdhmB25jvL+fbk7Y9XU+jI/mJWRbE3k1WyOlXBqOs2HEBcQNxE3aW7m8h1++Y6Wg4i13K7nXBVf5/NBKodi2BrBohDGeZPtRJwVMZbEWhA7mIiBBBrha4zWCB9D1ANQ6YIM5D2Cfrj0xaEP9i92GktbPq9DznO8LEWFPsMDkPMYLz72O8h5SEIOjz7EI715pLfew73o1VOvV0+9jjlbr2706kZPKaf4d7qbfpfW+evUXwU52n8QZUSGFSNcGO3BJDUzNMz3YYmPjJwjcfch58ZmxHHaDiEOmewpYrKaaV6MUVDtqVfpQYmCfGeGOZBmS4oNqdakW5PxoE6zJN2KdCsyrMm0IdOGLFuG2ZBj8wChI7WsdZwocqbImREuFDtT7NhJnXJnyl2olKLeXDo9QMcrGK9gos4GdKInE5VMUjFFxRQddTr8p+s73Nikex1/FvizyJ8lAawKYkMo28LZHcmBGI4l8V4mp3P5ppCzpVwezS9TODOXX3YjPkFcRNxE3Ka5pTPjQI4QbdVR5y5tTbo/XkF8yo3dfNfAp6M4XcKn+XyQwZsJHIxidzhbQlgfzOpANoTpbwlniz9bvXktiM8zuFLBTwV8m8fpTN7RIWdLJOsiWB3FqkjWhLIumI0BbPNnhx+7/Nnuy6vRvV5JeHqZf49xdgw3p8CSfDtSh5Cko06sGVEvy0InbJCsdSTkdFDH955LHUmXSPvNPsZ/QvsaE6jjjYQciTdS8vSfhZwxKmp9mRfEigi2JHBgGEdG8PZYLu1AnEFcQdyitZXrLdw4R+vriA00zebiOL4dzkfpHI5lWyRLwpjoQ54L8dbEWhE3lDgzIk0JMsbPRKaOl0Gn0OlCTlf9yfVXQY5fH2JMyLSi2PU+5CzVssGfPWEciePjTH4o4/Zkmhq5uRnxDu2Had7fb0kMtVrGuTLeg9HulCkY4UKuI1l2pNqQYkOKFWlWMlp+1alDSbOUwSNBSAaPNTk68EjXPB1XOx3gkbbXJPAMd6DYUQZPmRNluhwEKZKnyplq106tM14hOxRInmwdWqfDf1oyJrjXBrTRj0Y/+Up0eQBrg9gcwvZQ9kZwMJZ3Uvggi9M5fFPIz+WcG8e30zm7kruvIk4jLuiednQ3Op2zNd3RaEsrbe0IyZntIuI9Lq/jzDS+GM3pYj7K4WQaxxI5GMOeCLaGsjWKTeFsDmKrP/tCeD+Zc6W0TOz5Qx5fD+PjDN5O5lAce6LZGsXGSFZHsjKMVcGsDWSDP1sD2B3IniAORHI09bldMU/WKSgzo9iSIjsyLUgdQvIQkixIMCPOjJjB8s/0iEGEDSLMVE+iTqCpDJ6Agfod4JE4IYFH4tC/2X4mBBndp2/CBnby5k9EznQtcwJYFsqmWPZlcKiAN6s5uxHxGeIy4i5CiqW4RPsxxFaaG7lSw4+lfJLFkXh2RLIinMl+FChItiHeinhL4gYTOZAgY/wH4meC1qhztqbs34Wcrvqz66+CnIB+xJkyzJYSBVWeMnLmebPMl40B7A3naDynsvixnDtTaF5A0w7ECcQbXNr8tzo/6v0Z68JEpX6lCyUuDHci254MG1KtSbaSkfPAThlKylBSLUm1JM2KdOvOh5/sf4U6nQO3jkcdJ8pdZOpUOTPaRdY60rvOeOlqx5PxOq0zWRd5cK/tDRha9AwR7oP9WGBD0t8WeHPukA2B7EzlP3RHEvgRBofZHE6jzMl/DCKy/Wcn8ulFTQdQHyBuC5niba1dx6HNunY0yJoFrRI07ZWxA3E17Qe4spqvqzhs5F8mM/JLN5J581kXo/jlSgOJLIljLVadgTyTgo/lHC1iuvVfD2ML7L4MJU3E2Xk7IhkSySrwlgZyspAVvuz3o9tgewOYV8Yx9KePZj83Cp/JlhTYUm1C6VOpAwi3ZI0S5ItSbQgwUwWOlGDiRhEuGRYOVjWOkEvEWDaqXikH6zyppkRfiZ/QvsbE/T7vPlTkFPmRrWSaT7M9mdJMOuj2JPKa3m8M5Yf1yFOIa7IvzTcaqf5GuJtxC7al3OzlvMj+SyHNxLZFcmaKGr9KXIj1Y5EGxKsiDcjypRgE50iNMbbCC8D2c6nCzld9SfXXwU5QQOINyXbjlK3XyNnUyB7wzmWwCfD+KmCu1NpWUj7XsRRxDu9Pp3DdG/q/ZngxgRPyhwpciDfnixb0q1JsSLJkiRLki1lrvyqky1ItugEj8ShdGv5dSfbWpY70utOjh15duTYyQ4FBQ7k64ZsBQ6djz3FDpQ4yTkIUgDPSGdGO8laZ6wLY1xlN7YOa5wO/+mOW9F7PUDrvZjtw2wf5njL6aJLtaz2Y50fmwPZFcbBWI4m8k4q72XxaQFfl3BrBpemcb6Oa6sQR3TGBLoT0Y4g0Vv3OH7eFbRIKucW4mfEKcQRzi7gm6l8Us4HeXwwjPczeSeZ1+M4ksqOCLYEcDCWr0ZwdRxXRvNTEV9mcjqN95N5I56DMeyJYmck2yJZH86aMNYEsSaAjQFsD+GVSPbH6h9JfW5LaI8GV6qGMNqOanf9EkdSB5NhRZolqUNIGkqCGfH3UCeyAzymesGmneAJvAc8Eip8jWUI/ZsdYELwg4ZpEX8qcqo8merNLD8WBbI2gp1J7B/GiXF8uwrxPuKKvAZyq52WG4h3Ea8g1nCngUtj+LKAN5PYHc2GGOqDKPUgw4EUGxKtSTAjwpSQgZ1/M973xOd0Iaer/uT6qyAn2IDEweTYU+ZOtZIaLxk5y/3YFMi+CI4n3occsZ8bexDvPn6ggmlezNAyWUmVMyX2DLcnz5ZMG9KsSLaUkZM09MGdYE6iBYkWJA0l2ZJky84pXIYEHhuG2ZCl25zOtiXbnhw7cnRWbPlS3yN9OrSOBJ4O6khZ19JCQbUbVe5UuVN9j9bpiBad6tmpdaSFglnezPKWg3bma1jkzXIfVvmyxodNAeyOkEOsjyVzIpOPc7lQyeUxXJ3CldncXEPbIcSXiKuI24gWWgV3BTcF13R98961gibEFcRPiC+4u4eLy/h6Ep+U8kkhp3L5MJ23kjiSzGtxvJ7IqXx+GcuNSVyo4MtsTqfzUSonEzkex8FoXolidyQ7I9kWw+ZINoSxIYRtoeyJ5mBiryNpf98Z0Wu+B+MtqbZitCOlDuRZMcySTCsyrEi3JHUoyeYkmMvUiTYj0ozIwbLWkZ92Bt0DnoEEmBBggr8x/sYEDvwTOnggISb36ZsIHWb+LOSUulGlZIqGBl8WBrAmnO3x7Mvk+Eg+W8idNxAXZZ16q52WW4gPEQcRG7kzl8sT+GY476SwN4otccwJpsKTYQ6k2srIiRxEqA7J/gPlqWOH31oXcrrqz6y/CnJCDEkcTK6D3m+RszmoEzlnK2maRusixH4ubEa89+z6TKZrmOrFVDXldhTbUWhHrg0ZVqRKpPnfIUeijvRHCTmd1LEi04ZMa7JsGWbLMDv5M9uOHAdy7Ml1JM+RPCdy79mlliZsJY4yciTqdLzrSMvTHR6g1R6Mc2e8p7xN0EGdaUrdu44OOQ0a+WlnrheN3izxZrkPy9Ws1bIliF3h7Ivi1XiOpfJuJl9k8kspt2u4WcuFOq6sRLyB+AlxDXEH0SZHul0RXNIFid4WNEsObO2IO4griPOIk9zawfezOF3FpyV8WsDHGZxM5kgcx1P4OJ+fqrg1hRsTOVvCZ5l8msaHKZxM5HisjJw9EeyOZHcCO+PYFs12yRs7gSMZfz+e03+5N5NtGG1GtT2VjuSYkWlGviNZOuSkDSXFjCQzEs2IGyxTR5qwReiQE2pK6EsydSRI/OeQ8yvG/OnIqdeywJ/VoWyLY286B4v5oIGrBxHnEG0yclrvIj5GHEZs4W4jVyfxXREnkzkQxbY45oUwypNsR1JtSbHqQk5X/c/WfxtyrJ7F+nkcntdzelHPtY+eW79uHgO6qw30QwxJtdAf7tpjpIpqJRNVzPRmgW/nkrT0liOpnNZF3N2OOI44zoIoZmqZrGKcC6McGWFLgS05VqRbkmxBgjnx/7QThz6gk4Y+YNSWYUOGjXxY+qseZkuOA7n25N0zahsh+eI4MMKBEgdKneSga3mtwFX2ZBvlfp/dIcT6K/8pzuWp2ermaNmnpoFahaqWaFllS/r/NkUxPZw9sTwagJHE/golm8zuFjK5XFcnsrVRt3f2HnZDqdNcENwUXBecOF+odMmZR/c0WUcnODiGr6cymeVfFHM10V8WcA7yXxVzPUpNM/k+kTOlvJ1Ll8M4/1k3k3krXiOxHIomlci2BPGjnB2RrIvkV2xbA5lXwJv5T35Wtpjq/2oc2aaM5OcGONEuSPFDhTYk2tPlhWZlmQMJW0oKeY65OioIy2wyTtsus3pB3bwwD+nw0zve7zp6F+TxoxYc2LNiZNgY02CDYnWJNmQakuqLSnWpNqQYUumHdn25DiQ50ihIyNcGOlOjZp6LQv9WRPGzgT2Z3K8kkNjOLsT8QuijfZ2mgTNdxBfII7Tvo27i7g1jXMVfJTOwRh2xLE4jHFe5DuTZkOSpZzY9mchR0pcNHxSz+Dv9H9Sr9/f6fsEfZ/oQk5X6eovhJwUc4a79qhUysiZobkPOdLG2o/l8mBNh5yeMnKUjHVmlCMjrMm3JtuKtI6BzL+OnA7q/Gqt4PeQk2VHjr08apOoI1uxOTHCXkZOiYOMnHKnzjTrkQpGKnQ2oG4ycsa7P8AG9L57HTVzddRZpmWF9K4TxJYwdkSzN57D8XwQwzcpnCvgQgUXx/BLLTdWcHcX4jPEWcQthKBZlyJ6SXBdd7Jzt2OPoBlxG3ELcYbmg5xfyreT+XIkX43gq0JO53J2JLen0lTL9fH8WMxXuZzO5t0kTiZ1Imd/JHvD2RXBK3HsjmVHFLtjeD1T71jOUztjuy9QU+vCFGfGOzPKWX6Hy3Mg154saxk56RbyTWjSYBIGkzCYuMHEDJapIw24wkwJe+k/iJwQkwfzRkJO1GAZOTF/GDlOv0FO6H3I+WkH4iKilfZ2miXkfIV4i9Yd3FnMzemcr+SjDA5FszOWJaGM96LAmYx7kCPfz3Yhp6v+0/VXQU6wASnmFLp0r1RS5ckEJTM0NGpZpJHdBzqQc2eKDjnHEMe6NUYyw4caT8Y6U+lwH3KSzIiXfjWWfhyYP6Djhj6gEyweMGpLtSbVmnTbB/cwe7I7Rm1OndQptJeTRuWIayfKnClzptyVCgUVCirdGOXGKHf5aedXuaIdTzszdMFuUqSbTB0Vi7Qs0bLcj5WBrA9lcxQ74tgfy1tRnE7g2yy+L+SHEn4awy91XFmOOIj4BHFFntLcFFwV3Lhng6Cp42pHCjgQiKuI0zTt5dx8vhnL58V8WciFSm6Np2UaTVO4PJrvhvNFNp8O490k3k7izQSOxnE4hteieCWCvZG8lsDOKHZHcySTtwse3p/aY4UfdQqmujLJhTEuVDpT6sRwRxk5OdZkWzHMkgxL0sxJMSfZjMR7tE7MYKJ1J6Lhg34XCaED/5yOMH1wd/DmPolj8W8gx0eHnHj2Z3C8goNV/LgdcUEOQGqWnG++QbxNyy7uLOfGTM6P5FQmR2LYE8PyYCapGe5Ehg3JQ0gwJ8ZMvws5XfU/VH8h5CSbUeDcrcJTRk6tF/N9WKRhrVY2vPkogx/K5CXpO1sRRxFHH54fQa2GSR6McaLCjiIr8iwZNoRUC5KkOcxgYqUfCuYPaMkC67cd/6C1ghQr0mwe3FkSdezIsSdXt1ZQ6Cg7FxTZdWqdUulo1JVShQyeDq0z2o0xCtl/ulPreDDZk2lKZihl8NSr5ATrOSoW+LDQh0W+LPNnZTBrw9kUza4oDoVxIppPkvgyk6/z+bGC8zVcms3V1bS/jvgecQfRQnOr/ITTsS3d9CvqtCHuIH5GnOTqer6dxueVfDmClimIaYhp3J3ILxWcyefzYZwaxslk3k7izUSOxPN6HAdjOBDN/mhejWNPNIdTeL+k21v5vdeH0KBghhtTXJmgoNqFCmeKnShwItdRRk6uFdlWZA0h04JUM1LMSDa7BzyDiR1EzGCiTTtPdn7bkiHNv9/SP+K33QEbiTdxFpKD57+HHD/WhMjIOVbGa6P4fgviZ8RdOQCppYW27xAnaNrL7ZXcrOPCKD7J4mg0e6NZEUyNiiJHMq26kNNV/+P1V0FO0ACSzMh30i/3YLQH4z2Zrma+Dwu9WOPDzmAOx/BhOt+Xyqegt7cgjiCO9JofLiOn2pFyG4ZbkmtJlgUp5vIPpphBMnIkp8VfdYzFA1pCTrw5CRYkWJCo20FItiLV5kFtS4YdGXYMs2eYvU7rOMibbPn2FNpT6CBrnWIdcopdKXWlVKd1Ot51Rt8baK3LFZ2mpNZTRx0l9UrqlcxW6SIDfFjky9JAVoSwNpzN4ewN4XAob8fyYQpf5vBDGRfGc7mWs3Xc3IR4H/Ez4gbiLm3tCCEbgP7qaqdVyg+Vwty+pu0gV5Zzdjo/j0U0IGYgpnCrmnMlfJ3LZ1l8lNmJnKOJHInncDyHYjkYy4EYDiVwMp9T5Q8fSGOOB5PtqFMyScE4BaNcKXdhhLOMnBwH2XAo14phlmQNIU2ijjnJulWCeHNZ63RciT6wf0/9/Kv9T5DzG97o/TnIiWN/OkdLOVDJt5sQPyJu09oq5x61fE/7e9zdx+3V3KzjYhWfZ3EslleiWRXEFBXFDh3I0e9CTlf9z9VfBTmB/UkcTL6Tfpk7o9wZ58E0FfO8WaBmjQ87gjgULSPnVg1353NrM+J1xOu954Ux3YuJ7lQ7UG6jV2hJzhAyzUk2I0H6RVg3bY80e0A/UPpEmxNnTpx5J3jkBx6d1vltS+M16V1H1jr25DnIN6QFdhTYUWQvbxMUOVHszAgXSlwocZG1jrxNoOgMPpC0jrRNMNWT6R7UelLrwQxPZiqp86ReyVwv5noxV0OjD/+LvfeMrqrs2raPvROKKEWaEECBEAghhfRkJzu995BOeu8dUiDU0EkgEDqIKIgVRcUGFgQERFGsNyhiQZr0mpB2vT/W2knQxFfux9dPny/XmGONkcEY/EhZx57XPOd5bvRjcyBPhvBMCDsn8VYI70dwJJ5vMvi5mF9ncGkBpxdycRN330Z8hTiHuKW5PZPQ0kRTuxTRu4JGqdG5i7iE+Bqxm/pt3FmFqEVU0TKfGxWcK5KR83kaHydwOJEPEziQwL54Pohjbyx749gby0cZfF7ER7k8H8JyOxbbstKT+Y7McWC6WlliT7EdeXZk25Itfd8syDEj21RudFKMZOpIagL51tSAaEMmG7T9lH9TnV2I3W91+J9HGtxzmRZroog1UcSZKu
     

Share This Page